磁透镜的功能特点

磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。......阅读全文

磁透镜的功能特点

磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。

磁透镜的功能介绍

磁聚焦现象一般都是利用载流螺线管中激发的磁场来实现的。在实际应用中,大多用载流的短线圈所激发的非均匀磁场来实现磁聚焦作用。由于这种线圈的作用与光学中的透镜作用相似,故称磁透镜。在显像管、电子显微镜和真空器件中,常用磁透镜来聚焦电子束。

磁透镜的应用介绍

离子显微镜E.W.弥勒于1951年发明的一种分辨率极高、能直接用于观察金属表面原子的分析装置,简称FIM。FIM(Field Ion Microscope)是最早达到原子分辨率,也就是最早能看得到原子尺度的显微镜。FIM(FieldIonMicroscope)是最早达到原子分辨率,也就是最早能看得到

磁透镜的相关介绍

  磁聚焦现象一般都是利用载流螺线管中激发的磁场来实现的。在实际应用中,大多用载流的短线圈所激发的非均匀磁场来实现磁聚焦作用。由于这种线圈的作用与光学中的透镜作用相似,故称磁透镜。在显像管、电子显微镜和真空器件中,常用磁透镜来聚焦电子束。

磁透镜的工作原理

如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两种运

磁透镜的工作原理

如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两种运

磁透镜的概念介绍

磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。

磁透镜的聚焦原理

  如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两

电磁透镜简介

  电子波和光波不同,不能通过玻璃透镜会聚成像。但是轴对称的非均匀电场和磁场则可以让电子束折射,从而产生电子束的会聚与发散,达到成像的目的。人们把用静电场构成的透镜称之为“静电透镜”。把电磁线圈产生的磁场所构成的透镜称之为“电磁透镜”。  电子作为带电粒子在磁场中运动会受到洛伦兹力的作用,轴旋转对称

磁透镜与光学透镜的比较

  光学透镜成像时,物距L1、象距L2、焦距f三者之间满足右图1所示关系式:  由于光学透镜的焦距f是不能改变的,要满足成像条件,必须同时改变L1和L2。  与光学透镜相似,电磁透镜成像时也必须满足式。但磁透镜的焦距可以通过改变线圈中通过电流的大小来调节。采用磁透镜成像时,可以在固定L1的情况下,改

磁透镜粒子加速器

  粒子加速器(particle accelerator)全名为“荷电粒子加速器”,是使带电粒子在高真空场中受磁场力控制、电场力加速而达到高能量的特种电磁、高真空装置。是人为地提供各种高能粒子束或辐射线的现代化装备。  日常生活中常见的粒子加速器有用于电视的阴极射线管及X光管等设施。一部分低能加速器

电磁透镜色差的相关介绍

  色差是由于成像电子的能量不同或波动,电子在透镜磁场中运动速度不同,从物面上一点散射的电子不能聚焦在像面上同一点而形成的像差,如图1-6所示。  不同能量的电子聚焦在不同位置,像平面上也有一个最小半径为的散焦斑。同样将折算到物平面上,得到半径为的圆斑,用表示色差,的大小由下式来确定:  式中,是电

简述电磁透镜的聚焦原理

1、聚焦镜聚光镜处在电子枪的下方,一般由2~3级组成,从上至下依次称为第1、第2聚光镜(以C1 和C2表示)。关于电磁透镜的结构和工作原理已经在上一节中介绍,电镜中设置聚光镜的用途是将电子枪发射出来的电子束流会聚成亮度均匀且照射范围可调的光斑,投射在下面的样品上。C1和C2的结构相似,但极靴形状和工

关于磁透镜的磁聚焦的原理简介

  磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。  如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于

磁透镜螺线管相关介绍

  在物理学里,术语螺线管指的是多重卷绕的导线,卷绕内部可以是空心的,或者有一个金属芯。当有电流通过导线时,螺线管内部会产生均匀磁场。螺线管是很重要的元件·。很多物理实验的正确操作需要有均匀磁场。螺线管也可以用为电磁铁或电感器。  通电螺线管的极性跟电流方向间的关系,可以用右手螺旋定则来判断。就是用

电磁透镜及其聚焦原理

由于轴对称弯曲磁场对电子束有聚焦作用,因而可以得到电子光学像。我们称这种具有轴对称弯曲磁场装置构成的电子透镜为电磁透镜(electron magnetic lenses)。由于电磁透镜磁场非均匀分布,物、像点在磁场之外,电子在磁场中既受到轴向分量的作用,又受到径向分量的作用,使平行于轴进入磁场的电子

电磁透镜像散的相关介绍

  像散  像散是由透镜磁场的非旋转对称引起的像差。透镜的极靴孔加工误差,上、下极靴的轴线错位、极靴材质不均以及极靴孔周围的局部污染等,都会引起透镜的磁场产生椭圆度。椭圆磁场长、短轴方向上的聚焦能力存在差异,结果成像物点通过透镜后不能在像平面上聚焦于一点(图1-5)。  同样在长、短轴聚焦点之间有一

电磁透镜的定义和工作原理

定义:通电的线圈产生的磁场所构成的透镜。还有一种透镜为静电透镜:静电场构成的透镜。钨阴极和LaB6阴极采用电磁透镜,场发射电镜的第一聚光镜为静电透镜,第二聚光镜为电磁透镜。可见光可以通过玻璃透镜汇聚成像,而能让运动的电子产生偏折的方法是添加电场或磁场。工作原理:电子束通过电磁透镜时,由于电子带负电,

多功能酶的功能特点

酶是一种生物催化剂,它的化学组成是蛋白质或以蛋白质组成为主体的大分子物质。不同酶,其氨基酸组成、辅基种类、催化反应时的条件、分子量及其空间构型等均随之不同。通常一种酶只能专一性地催化一个化学反应,然而某些酶能催化2~6个化学反应,故把这一类酶称为多功能酶。其中较为典型的有脂肪酸合成酶(fatty a

马弗炉的功能特点

马弗炉系周期作业式,供实验室、工矿企业、科研单位作元素分析测定和一般小型钢件淬火、退火、回火等热处理时加热用,高温马福炉还可作金属、陶瓷的烧结、溶解、分析等高温加热用。

核酶的功能特点

与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。

马弗炉的功能特点

马弗炉系周期作业式,供实验室、工矿企业、科研单位作元素分析测定和一般小型钢件淬火、退火、回火等热处理时加热用,高温马福炉还可作金属、陶瓷的烧结、溶解、分析等高温加热用。

光栅的功能特点

光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅

核酶的功能特点

与一般的翻译RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 核酶可通过催化靶位点RNA链中磷酸二酯键的断裂,特异性地剪切底物RNA分子,从而阻断靶基因的表达。核酶一词用于描述具有催化活性的RN

溶酶体的功能特点

已发现溶酶体内有60余种酸性水解酶(至2006年),包括蛋白酶、核酸酶、磷酸酶、糖苷酶、脂肪酶、磷酸酯酶及硫酸脂酶等。这些酶控制多种内源性和外源性大分子物质的消化。因此,溶酶体具有溶解或消化的功能,为细胞内的消化器官。

rRNA的功能特点

rRNA与多种蛋白质分子共同构成核蛋白体。核蛋白体相当于“装配机”,能促使tRNA所携带的氨基酰基缩合成肽。核蛋白体附着在mRNA上,并沿着mRNA长链的起始信号向终止信号移动。至于rRNA在蛋白质生物合成中的具体作用还不清楚。

α螺旋的功能特点

α-螺旋在DNA结合基序(DNA binding motifs)中有非常重要的作用,比如在锌指结构,亮氨酸拉链,螺旋-转角-螺旋等基序中都含有α-螺旋。这是因为α-螺旋的直径为1.2nm,正好和B-DNA大沟的直径相等,所以能够和B型DNA紧密结合。

mRNA的功能特点

mRNA含A、U、G、C四种核苷酸,每三个相联而成一个三联体,即密码,代表一个氨基酸的信息,故按数学中排列组合法则计算,可形成43=64个不同的密码。根据实验结果,推得64个密码与氨基酸的对应关系如下表。 mRNA密码与氨基酸的对应关系64个密码中,61个密码分别代表各种氨基酸。每种氨基酸少的只有一

核酶的功能特点

到目前为止发现的各种核酶有以下特点。(1)核酶的化学本质为RNA或RNA片段。有些核糖核蛋白也有催化作用,但活性中心位于其蛋白质成分上,并不属于核酶,例如端粒酶。然而,如果核糖核蛋白的RNA含活性中心,则该RNA组分就是核酶,例如核糖核酸酶P分子中的M1RNA。(2)核酶的底物种类比较少,大多数是自

tRNA的功能特点

作为“搬运工具”的tRNA有很多种,体内20种氨基酸都有其自已特有的tRNA,所以,tRNA的种类不少于20种。tRNA在ATP供应能量和酶的作用下,可分别与特定的氨基酸结合。每个tRNA都有一个由三个核苷酸编成的“反密码”。这个反密码可以根据碱基配对的原则与mRNA上对应的密码配对,而且只有当反密