提议新通则|质谱法测定生物药中残留宿主细胞蛋白

美国药典委员会(USP)于2023年5月1日在药典论坛PF49(3)中发布了一篇提议新通则:通则<1132.1>质谱法测定生物药中残留宿主细胞蛋白(Residual Host Cell Protein Measurement in Biopharmaceuticals by Mass Spectrometry) 来自宿主细胞蛋白残留的挑战 随着生物医药技术的发展,越来越多依赖宿主细胞表达生产的生物制品进入市场,如重组胰岛素产品、重组蛋白和抗体药物、病毒载体、多种疫苗产品等。由于生产工艺本身的特点,许多来自宿主细胞的组份不可避免被引入生产流程,这些物质的残留可能会污染最终产品,进而影响这些生物制品的安全、有效和稳定性。因此,全球监管机构都要求生产企业对这些宿主细胞来源的工艺相关杂质进行严格的检测与控制。 在宿主来源的所有工艺相关杂质中,以宿主细胞蛋白(Host Cell Protein,HCP)残留的检测最为......阅读全文

质谱法

  质谱法具有如下特点:(1)灵敏度高,通常一次分析仅需几微克的样品。(2)响应时间短,分析速度快。(3)信息量大,能得到大量的结构信息和样品分子的相对分子质量。(4)可测定分子式。  一、质谱法的基本原理  理解并掌握质谱法的基本原理。  二、质谱的表示方法  最强的离子峰为基峰。  三、质谱仪 

质谱法简介

  质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由

质谱法概述

质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实

质谱法概述

质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实

质谱法的定义

质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核

质谱法的发现

  1898年W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,  质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素[kg1]Ne和[kg1]Ne阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用来测定同位素的相对丰

质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

什么是质谱法?

  质谱法是确定样品中含有哪些分子的方法之一。然而,如果安保人员面对的是一种未知的、可能存在危险的物质,他们可不想浪费时间把样品送到实验室,然后所能做的只能是等待;他们宁愿能够将便携式质谱仪带到现场,以便快速得到答案。  人们对质谱仪小型化的努力绝不是今天才刚刚开始的,几十年来,研究人员一直致力于将

质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

什么是质谱法

质谱仪质谱仪定义: 质谱仪是一种测量已转化为离子的单个分子质量的仪器;也就是带电的分子。简单定义:用于称量分子的机器。分子大小。质谱仪是如何使用的?质谱是一种强大的分析技术,用于识别未知化合物、量化已知材料以及阐明分子的结构和化学性质。简单的定义:质谱仪被用来帮助科学家:1. 识别固体、液体和气体中

质谱法的特点

气体或固体、液体蒸气的分子受一定能量的电子束轰击或强电场的作用,失去一个价电子而形成带正电荷的分子离子;与此同时,分子离子还可进一步发生一些有规律的断裂,生成各种碎片离子。这些带有正电荷的离子在电场、磁场作用下按质荷比(用m/z或m/e表示,即离子质量与电荷量的比值)的大小排列、分析,并依次被检测、

质谱法的定义

质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核

质谱法定义

质谱法定义 :是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。

什么是质谱法?

 质谱法是确定样品中含有哪些分子的方法之一。然而,如果安保人员面对的是一种未知的、可能存在危险的物质,他们可不想浪费时间把样品送到实验室,然后所能做的只能是等待;他们宁愿能够将便携式质谱仪带到现场,以便快速得到答案。  人们对质谱仪小型化的努力绝不是今天才刚刚开始的,几十年来,研究人员一直致力于将这

质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散--离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

提议新通则-|-质谱法测定生物药中残留宿主细胞蛋白

  美国药典委员会(USP)于2023年5月1日在药典论坛PF49(3)中发布了一篇提议新通则:通则质谱法测定生物药中残留宿主细胞蛋白(Residual Host Cell Protein Measurement in Biopharmaceuticals by Mass Spectrometry)

质谱法的仪器介绍

利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。目前后两种用得较多,而且多与气相色谱仪和电

什么是无机质谱法?

  对无机化合物进行定性定量分析的质谱方法。早期使用火花源质谱仪器为主,目前成功地把电感耦合等离子体(ICP)电离源与质谱结合起来,使质谱法更广泛的用于无机物的分析。无机质谱法的主要应用领域有:高纯气体中痕量杂质分析;无机物元素分析;固体表面的微区和深度分析等。无机质谱法的突出优点是它具有超高灵敏度

大规模质谱法简介

         目前,研究人员们正在通过各种方法使大规模质谱法变得更有效,而且将这一技术工具缩小化。           大规模质谱法对于药物的发现来说是一个无法比拟的有力工具,而且它在定性与定量分析的应用中有着很大的价值。虽然大规模质谱法的应用能力和敏感性被不断的改进,但是在药物发现研究里面的

质谱法的方法应用

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片

质谱法的应用简介

  质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量

串联质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小。在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

质谱法怎么看图

看图方法:主要看特征峰,最右面的峰是全分子的离子峰,是化学物质的分子失去1个质子产生的峰,最右面的分子量最大,分子片段不可能比全分子的分子量大,所以最右侧峰应该是大约相对分子量的数值。氧上面加上正号,不一定是失去电子,多数情况下是氧又和一个质子(H+)结合了,从而多了一个正电荷。以下是质谱法运用的相

质谱法的应用介绍

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片

质谱法样品注入系统

  可分直接注入、气相色谱、液相色谱、气体扩散四种方法。固体样品通过直接进样杆将样品注入,加热使固体样品转为气体分子。对不纯的样品可经气相或液相色谱预先分离后,通过接口引入。液相色谱-质谱接口有传动带接口、直接液体接口和热喷雾接口。热喷雾接口是最新提出的一种软电离方法,能适用于高极性反相溶剂和低挥发

质谱法怎么看图

看图方法:主要看特征峰,最右面的峰是全分子的离子峰,是化学物质的分子失去1个质子产生的峰,最右面的分子量最大,分子片段不可能比全分子的分子量大,所以最右侧峰应该是大约相对分子量的数值。氧上面加上正号,不一定是失去电子,多数情况下是氧又和一个质子(H+)结合了,从而多了一个正电荷。以下是质谱法运用的相

有机质谱法概念

有机质谱法概念将有机样品分子在离子源内离子化后,裂解成各种质荷比(m/z)的离子,进而在电场和磁场的作用下被分离,并被检测器测定,按质荷比的大小与强度排列而成的谱,称为有机质谱。利用有机质谱确定有机化合物的分子量、分子式及分子结构的方法,称为有机质谱法(organic mass spectromet

质谱法的原理简介

  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的

傅里叶变换质谱法概述

  傅里叶变换质谱法(Fourier transform mass spectrometry,FTMS)是离子回旋共振波谱法(ion cyclotron resonance spectrometry,ICR)与现代计算机技术相结合的产物,因而又称傅里叶变换离子回旋共振质谱法(FTICR MS)。  

串联质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小。在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道