超临界流体色谱实战丨薰衣草精油中芳樟醇的分离纯化制备

背景近年来,随着生活水平的提高,精油在生活中使用越来越多。精油具有特殊的香气,可应用于身体保健、美容护肤、情绪调节等方面,正在成为现代人追求健康生活的新趋势。精油中的许多香气成分是手性化合物,手性化合物的对映体之间闻起来的味道并不相同,对映体的比例变化会直接影响到精油的品质和使用感受。因此在精油开发过程中对映体的比例确认尤为重要,本文将介绍一种使用Nexera UC快速分离与高回收率制备薰衣草精油中芳樟醇对映体的方法。芳樟醇对映体的分离使用岛津Nexera UC手性筛查系统对薰衣草精油中芳樟醇对映体进行分离。经过条件优化,最终仅需2.5分钟即可成功分离出芳樟醇的对映体。分析条件和结果如下:分析条件 薰衣草精油中芳樟醇对映体的色谱图芳樟醇对映体的纯化制备岛津Nexera UC超临界流体色谱仪高效可靠,检测灵敏,搭配灵活,满足各类应用要求。上述Nexera UC手性筛选系统通过连接馏分收集器升级为分析级馏分收集......阅读全文

超临界流体萃取与超临界流体色谱有什么关系吗

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急剧增大.这些特性使得超临界流体成为一种好的萃取剂.而超临界流体萃取,就是利用

液相色谱超临界流体色谱联用

当复杂样品中欲测组分不易挥发或热不稳定,用液相色谱初步分离后的欲测组分不能用气相色谱分析,则可用超监界流体色谱取代气相色谱,组成液相色谱-超临界流体色谱联用(LC-SFC)系统,其接口可采用液相色谱-气相色谱联用时的保留间隙技术,其典型流路如图11-4-30所示。1991年Moulder用此系统分析

关于超临界流体萃取的新技术的介绍

  长期以来,对超临界流体萃取技术的产业化,主要是单纯超临界CO2的间隙式萃取,处理的物料也多以固体植物为主,得到的几乎都是粗提混合物。为了得到高纯度的产品,德国、日本、澳大利亚、意大利等国用于精制天然维生素-E、精油脱萜、提取高纯的不饱和脂肪酸等;法国用于从啤酒及葡萄酒中分离乙醇制备无醇啤酒及无醇

超临界流体萃取的新技术

  长期以来,对超临界流体萃取技术的产业化,主要是单纯超临界CO2的间隙式萃取,处理的物料也多以固体植物为主,得到的几乎都是粗提混合物。为了得到高纯度的产品,德国、日本、澳大利亚、 意大利等国用于精制天然维生素-E、精油脱萜、提取高纯的不饱和脂肪酸等; 法国用于从啤酒及葡萄酒中分离乙醇制备无醇啤酒及

高速逆流色谱法分离制备沉香中的沉香四醇

摘要:目的:研究高速逆流色谱分离制备沉香中2-(2-苯乙基)色酮类活性成分的方法。方法:采用氯仿-甲醇-水(4 ∶ 2. 6 ∶2. 4)为两相溶剂体系,上相为固定相,流速1. 2 mL/min,正向转速900 rpm。结果:利用高速逆流色谱法从沉香95% 乙醇粗提物中一次性分离得到两个2-(2-苯

超临界流体色谱仪简介

超临界流体色谱仪(SFC)是以超临界流体作为流动相的色谱仪,是 20 世纪 80 年代发展起来的一种崭新的色谱技术。SFC 具有 GC 和 LC 所没有的优点,并能分离和分析 GC 和 LC 不能解决的一些对象,应用广泛,发展十分迅速。至今约有全部分离的 25% 涉及难以分离的物质,通过 S

超临界流体色谱仪简介

超临界流体色谱仪(SFC)是以超临界流体作为流动相的色谱仪,是20世纪80年代发展起来的一种崭新的色谱技术。SFC具有GC和LC所没有的优点,并能分离和分析GC和LC不能解决的一些对象,应用广泛,发展十分迅速。至今约有全部分离的25%涉及难以分离的物质,通过SFC能取得较为满意的结果。一、超临界流体

超临界流体色谱法简介

  超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。  超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由

超临界流体萃取分离法中萃取剂是什么物质

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急剧增大.这些特性使得超临界流体成为一种好的萃取剂.而超临界流体萃取,就是利用

药用精油的超临界萃取

本文描述了超临界流体技术在精油提取中的应用,未来化学科技有限公司为对此领域感兴趣的研究人员提供一些精油超临界萃取的实验数据,以供参考: Plant TargetsGas Conditions  Allium cepa (onion)Onion oleoresin; sulphur content;f

制备色谱应用于药物高效分离纯化

工业制备色谱应用于药物高效分离纯化作为制药过程的核心环节之一的分离纯化技术,工业制备色谱的优劣直接关系到药物的品质和安全性,而且影响到制药企业的效益和市场竞争力。寻求经济、高效绿色的新型分离纯化技术一直受到广泛的重视。工业制备色谱技术具有高效、高选择性、能耗和溶剂消耗低、废弃物排放少以及自动化程度高

制备型高速逆流色谱分离纯化香菇多糖

摘 要 利用高速逆流色谱仪, 研究了双水相系统对香菇多糖的分离。溶剂系统为w ( PEG1000 ) ∶w (K2HPO4 ) ∶w (KH2 PO4 ) ∶w (H2O) = 0. 5∶1. 25∶1. 25∶7. 0,在转速为500 r/min,流速为1. 5 mL /min的条件下,成功分离了

超临界流体色谱法的定义

超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。

超临界流体色谱法的特点

  SFC因其超临界流体自身的一些特性 ,使得该方法较气相(GC)和液相(LC)有一定的优势:  1. SFC与GC的比较  SFC可以用比GC更低的温度,从而实现对热不稳定化合物进行有效的分离。由于柱温降低,分离选择性改进,可以分离手性化合物。  由于超临界流体的扩散系数比气体小,因此SFC的谱带

超临界流体色谱法的分类

  1.根据所用的色谱柱分类  填充柱超临界流体色谱(填充柱)  毛细管超临界流体色谱(毛细管柱)  2.根据色谱过程的用途分类  分析型SFC:主要用于常规的分析  制备型SFC:常用超临界二氧化碳作为流动相。

权威论证!熏衣草的气味可以减轻焦虑症

   焦虑障碍是最普遍的一类精神障碍。大约5.3%的日本成年人或18.2%的美国成年人在过去12个月内都至少符合一种焦虑症的诊断标准。由于发病率较高,开发有效的治疗焦虑症的方法是心理科学领域最紧迫的问题之一。  日本鹿儿岛大学的Hideki Kashiwadani博士说:“在民间医学中,长期以来人们

关于超临界流体色谱法的流体特性的介绍

  超临界流体具有对于分离极其有利的物理性质。它们的这些性质恰好介于气体和液体之间。超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离。另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质。另外,超临界流体的物理性质和化学

ELSD中压制备联用分离烷醇案例(30烷醇的分离)

综述:三十烷醇适具有促进生根、发芽、开花、茎叶生长和早熟作用,具有提高叶绿素含量、增强光合作用等多种生理功能。外观为白色鳞片状结晶体,熔点范围85.5-86.5℃,不溶于水,难溶于冷甲醇、乙醇、丙酮,易溶于乙醚、氯仿、四氯化碳,无紫外吸收。在全自动制备纯化过程中,对于无紫外吸收类物质(如烷醇类)采用

超临界流体干燥技术制备液相色谱填料基质多孔硅球

多孔硅胶微球是液相色谱理想的填料基质。传统的多孔硅胶微球制备工艺存在比表面积小、粒径不均一、团聚严重等问题。本文首次提出了利用超临界干燥技术制备液相色谱填料基质多孔硅球的工艺,并得到了较适宜的乳液制备、超临界干燥等多孔硅球制备条件。 本文以正硅酸乙酯为硅源,采用两步酸碱催化制备得到的分散相液滴分布均

顶空固相微萃取_气质分析罗勒叶香气成分

摘要: 采用顶空固相微萃取和气相色谱- 质谱分析白花罗勒叶的香气成分。萃取柱为DVB/CAR/PDMS时共检测出20 种挥发性成分,解析出占总挥发性成分的98. 273% 的18 种物质,主要成分是草蒿脑( 42. 879%) ,芳樟醇( 36. 214%) ,桉树脑( 3. 994%) 。萃取柱为

2009超临界流体色谱市场需求

2009年纯化SFC的需求   超临界流体色谱技术(Supercritical fluid chromatography ,SFC)是利用超临界流体取代有机或水溶剂,通过色谱柱传输样本,超临界流体通常为二氧化碳(CO2)。使用二氧化碳的SFC的优势在于无需有机溶剂回收处理。由于溶质在超临界流体

超临界流体色谱法的应用范围

超临界流体色谱法被广泛应用于天然物,药物,表面活性剂,高聚物,多聚物,农药,炸药和火箭推进剂等物质的分离和分析,

超临界流体色谱技术的研究与发展

超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由于它具有气相和液相所没有的优点,并能分离和分析气相和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

关于超临界流体色谱的内容简介

  超临界流体色谱(supercritical fluid chromatography;SFC)以超临界流体做流动相是依靠流动相的溶剂化能力来进行分离、分析的色谱过程,是20世纪80年代发展和完善起来的一种新技术。  超临界流体是物质在高于临界压力和临界温度时的一种状态,它具有气体和液体的某些性质

关于超临界流体色谱系统的简介

  超临界流体色谱系统是一种用于化学领域的分析仪器,于2009年7月15日启用。  技术指标:CO2流速:0.5-10ml/min;改性剂流速:0.01-10ml/min; 基线噪声: ±2.0×10-5 AU/cm@220nm, 基线漂移: 3.0×10-4 AU/小时; 工作压力: 400bar

超临界流体色谱技术的基本概念

超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由于它具有气相和液相所没有的优点,并能分离和分析气相和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

超临界流体色谱仪的历史简介

  1985年出现第一台商品型的超临界流体色谱仪.图20-s6表示了超临界流体色谱仪的一般流程.  很多部分类似于高效液相色谱仪,但有两点重要差别:  (l)具有一根恒温的色谱柱.这点类似气相色谱中的色谱柱,目的是为了提供对流动相的精确温度控制.  (2)带有一个限流器(或称反压装置).目的用以对柱

关于超临界流体色谱的信息介-绍

  超临界流体色谱兼有气相色谱和液相色谱的特点。它既可分析气相色谱不适应的高沸点、低挥发性样品,又比高效液相色谱有更快的分析速度和条件。操作温度主要决定于所选用的流体,常用的有二氧化碳及氧化亚氮。超临界流体容易控制和调节,在进入检测器前可以转化为气体、液体或保持其超临界流体状态,因此可与现有任何液相

超临界流体色谱法的工作原理

  SFC的流动相:超临界流体(CO2、N2O、NH3等)  SFC的固定相:固体吸附剂(硅胶)或键合到载体(或毛细管壁)上的高聚物;可使用液相色谱的柱填料。  分离机理:吸附与脱附。组分在两相间的分配系数不同而被分离。  压力效应:SFC的柱压降大(比毛细管色谱大30倍),对分离有影响(柱前端与柱

简介超临界流体色谱法的应用

  SFC可弥补GC和HPLC在分析性能上的某些不足,分离效能和分析速度介于两种色谱方法之间。  SFC可分析不宜用GC分析的一些物质,如强极性、强吸附性、热稳定性差、难挥发的化合物;  它可分析相对分子质量比GC大几个数量级的物质。  SFC可分析HPLC难以检测的各种化合物,如无紫外吸收的各种天