研究揭示赤霉素对水稻籽粒脱落的影响

近日,中国农业科学院深圳农业基因组研究所超级稻种质创新团队初步解析了赤霉素影响水稻落粒性的分子机制,相关研究成果发表在《植物细胞(The Plant Cell)》上。 赤霉素被广泛认为是引起“绿色革命”的激素,在水稻的生长发育中发挥了重要的作用,但对赤霉素是否参与调节种子落粒性的研究尚未有相关报道。 该研究发现赤霉素信号通过调节离层区木质素含量影响水稻籽粒脱落,离层区赤霉素含量越高或信号越强,水稻籽粒越容易脱落,反之则越难落粒。该研究为培育或改造具有适度落粒性的水稻品种,降低因落粒造成的产量损失及提高收获效率提供了参考。 该研究得到了国家自然科学基金、中国博士后科学基金、广东省重点领域研究发展计划等项目的支持。......阅读全文

上海生科院等发现赤霉素参与水稻穗型调控新机制

  10月20日,PLOS Genetics杂志发表了中国科学院上海生命科学研究院植物生理生态研究所林鸿宣研究组题为The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin

研究揭示赤霉素和脱落酸调控水稻株型的分子机制

  近日,《植物细胞》(The Plant Cell)在线发表了中国农业科学院作物科学研究所万建民院士团队关于赤霉素和脱落酸系统调控水稻株型分子机制的最新研究成果。该期刊同期以“APC/CTE 系统塑造水稻株型”为题对该研究进行了亮点点评。  水稻株型是与产量密切相关的重要农艺性状,受到极其复杂的分

赤霉素是什么

赤霉素,是广泛存在的一类植物激素。其化学结构属于二萜类酸,由四环骨架衍生而得。可刺激叶和芽的生长。已知的赤霉素类至少有38种。赤霉素应用于农业生产,在某些方面有较好效果。例如提高无籽葡萄产量,打破马铃薯休眠;在酿造啤酒时,用GA3来促进制备麦芽糖用的大麦种子的萌发;当晚稻遇阴雨低温而抽穗迟缓时,用赤

赤霉素是什么

赤霉素,是广泛存在的一类植物激素。其化学结构属于二萜类酸,由四环骨架衍生而得。可刺激叶和芽的生长。已知的赤霉素类至少有38种。赤霉素应用于农业生产,在某些方面有较好效果。例如提高无籽葡萄产量,打破马铃薯休眠;在酿造啤酒时,用GA3来促进制备麦芽糖用的大麦种子的萌发;当晚稻遇阴雨低温而抽穗迟缓时,用赤

什么是赤霉素

1926年,日本人黑泽英一从对水稻恶苗病的研究中发现了另外一种植物激素——赤霉素。日本人发现,稻田中总有一些水稻会染上一种疯长病,表现为植株生长异常旺盛,但结实率很低。这样的水稻不但自己生长要消耗大量的肥、水,还影响了周围水稻的采光、通风和吸取营养,因此被称为恶苗,这种会在植物间传染的病就被称为恶苗

赤霉素对α实验

一、原理 淀粉性种子在萌动过程中,胚释放出来的赤霉素能诱导糊粉层细胞中α-淀粉酶基因的表达,引起α-淀粉酶生物合成,并分泌到胚乳中催化淀粉水解为糖。通过碘试法比色测定淀粉在酶催化反应过程中的消耗量,可以定量分析α-淀粉酶的活力。 二、材料、仪器设备  及试剂 (一)材料:大麦、小麦

什么是赤霉素

GA3是赤霉素的一种,又称“九二O”。赤霉素是1935年日本科学家薮田在研究水稻恶苗病时发现的,它是指具有赤霉烷骨架,并能刺激细胞伸长和分裂的一类化合物的总称。到1998年为止,已发现121种赤霉素,分别称为GA1~GA121。可以说,赤霉素是植物激素中种类最多的一种激素。但是,在生产实践中广泛应用

研究揭示水稻DELLA蛋白的表观调控新机制

  9月11日,华中农业大学作物遗传改良全国重点实验室、湖北洪山实验室水稻团队教授周道绣和赵毓课题组在国际期刊EMBO Journal在线发表了研究论文,揭示了水稻DELLA蛋白抑制基因表达的表观调控新机制。  20世纪60年代以来,矮杆作物以其抗倒伏和收获指数高等优势,极大地增加了粮食产量。生长抑

周口师范学院从小桐子中克隆出基因提高水稻抗倒伏能力

  近日,周口师范学院河南省作物分子育种与生物反应器重点实验室唐跃辉博士带领团队,从小桐子中克隆获得了影响水稻株高和响应盐胁迫的基因,能够提高水稻抗倒伏的能力。该研究成果在线发表于《植物科学前沿》。  唐跃辉研究团队从小桐子中克隆获得了一个AP2/ERF家族基因,命名为JcDREB2,拟南芥原生质体

我国学者发现提高NGR5和GRF4表达量可提高水稻氮肥利用率

  上世纪60年代,以矮化育种为标志的“绿色革命”使水稻和小麦具有耐高肥、抗倒伏和高产的优良特性,但同时也存在氮肥利用效率低的缺点,其产量增加对化肥的依赖性高。持续大量的氮肥投入不仅增加种植成本,还导致环境污染。农业农村部公布2019年我国三大粮食作物的化肥利用率为39.2%,远低于世界平均水平,更

赤霉素的存在部位

高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。

赤霉素的存在形式

高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。

赤霉素的主要作用

赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促

赤霉素的研究应用

1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多

赤霉素的基本结构

赤霉素都含有赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的前体一般认为是贝壳杉烯。赤霉素的基本结构是赤霉素烷,有4个环。在赤霉素烷上,由于双键、羟基数目和位置不同,形成了各种赤霉素 。自由态赤霉素是具19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。

赤霉素的主要作用

赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促

赤霉素的作用介绍

赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促

赤霉素的作用介绍

赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促

赤霉素的有关历史

1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多

赤霉素的主要种类

自由型不以键的形式与其他物质结合,易被有机溶剂提取出来,具有生理活性。结合型和其他物质(如葡萄糖)结合,要通过酸水解或蛋白酶分解才能释放出自由赤霉素,无生理活性。束缚型这是GA的一种储藏形式。种子成熟时,GA转化为束缚型贮存,而在种子萌发时,又转变成游离型而发挥其调节作用。

赤霉素的存在部位

高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。

中科院童红宁博士研究揭示油菜素内酯决定水稻身高

  中科院遗传发育所植物基因组学国家重点实验室储成才研究组童红宁博士,通过对大量水稻激素相关突变体的分析,系统揭示了两种植物株高决定性激素油菜素内酯与赤霉素间的关系,这一研究成果11月4日在线发表在植物学领域顶级杂志《植物细胞》上。  作为新发现的绿色环保型植物生长调节剂,油菜素内酯是活性最高的高效

遗传发育所发现参与植物赤霉素代谢的新成员

  赤霉素(gibberellins,GAs)是一类非常重要的植物激素,参与许多植物生长发育等多个生物学过程。在开花植物中,13-羟化赤霉素(生理活性低,例如GA1)和13-氢赤霉素(生理活性高,例如GA4)经常是同时存在的。到目前为止,人们只是在水稻中鉴定到催化赤霉素13-羟化反应的P450酶(C

遗传发育所揭示赤霉素调控纤维素合成的分子机制

  纤维素是细胞壁的主要成分,其含量与结构影响茎秆机械强度等农艺性状。纤维素的合成与组装过程复杂,受多种激素和环境因子等严格调控。赤霉素是上世纪中期“绿色革命”的关键激素,在降低株高、增强作物抗倒性方面发挥了重要作用。但对于该激素是否调控纤维素合成及相关分子机制仍知之甚少。  中国科学院遗传与发育生

研究发现调控水稻茎秆基部节长度的新基因

  中科院上海植物生理生态研究所李来庚研究组与湖南亚华种业科学研究院杨远柱团队合作,发现了一个新的特异调控水稻茎秆基部节长度的基因。该基因在培育水稻半矮秆性状、提高抗倒伏能力、增加大面积水稻产量方面显示了重要的应用价值。相关研究成果日前发表于国际学术期刊《分子植物》。  自20世纪60年代以来,以作

赤霉素的分布特点

广泛分布于被子、裸子、蕨类植物、褐藻、绿藻、真菌和细菌中,多存在于生长旺盛部分,如茎端、嫩叶、根尖和果实种子。含量:1~1000ng鲜重,果实和种子(尤其是未成熟种子) 的赤霉素含量比营养器官的多两个数量级。每个器官或组织都含有两种以上的赤霉素,而且赤霉素的种类、数量和状态 (自由态或结合态)都因植

关于赤霉素的分布介绍

  广泛分布于被子、裸子、蕨类植物、褐藻、绿藻、真菌和细菌中,多存在于生长旺盛部分,如茎端、嫩叶、根尖和果实种子。含量:1~1000ng鲜重,果实和种子(尤其是未成熟种子) 的赤霉素含量比营养器官的多两个数量级。每个器官或组织都含有两种以上的赤霉素,而且赤霉素的种类、数量和状态 (自由态或结合态)都

简述赤霉素的基本结构

  赤霉素都含有赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的前体一般认为是贝壳杉烯。赤霉素的基本结构是赤霉素烷,有4个环。在赤霉素烷上,由于双键、羟基数目和位置不同,形成了各种赤霉素 [1] 。自由态赤霉素是具19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯

关于赤霉素的分类介绍

  1、自由型  不以键的形式与其他物质结合,易被有机溶剂提取出来,具有生理活性。  2、结合型  和其他物质(如葡萄糖)结合,要通过酸水解或蛋白酶分解才能释放出自由赤霉素,无生理活性。  3、束缚型  这是GA的一种储藏形式。种子成熟时,GA转化为束缚型贮存,而在种子萌发时,又转变成游离型而发挥其

关于赤霉素的用途介绍

  赤霉素适合以下作物:棉花、番茄、马铃薯、果树、稻、麦、大豆、烟草等,促进其生长、发芽、开花结果;能刺激果实生长,提高结实率,对棉花、蔬菜、瓜果、水稻、绿肥等有显著的增产效果。  赤霉素最突出的生理效应是促进茎的伸长和诱导长日植物在短日条件下抽薹开花。各种植物对赤霉素的敏感程度不同。遗传上矮生的植