一氧化碳电解制乙酸的新策略

近日,我所催化基础国家重点实验室纳米与界面催化研究中心碳基资源电催化转化研究组(523组)汪国雄研究员和高敦峰研究员团队在一氧化碳(CO)电解制备燃料和化学品研究中取得新进展,提出了通过构建金属—有机界面调控反应微环境,实现高选择性CO电解制乙酸的新策略。 二氧化碳(CO2)电解制乙烯、乙酸等多碳(C2+)产物是一种提高可再生能源消纳水平和实现碳循环利用的负碳技术。碱性CO2电解可以实现C2+产物的高效电合成,但CO2利用效率低。该问题有望通过串联催化路线(CO2-CO-C2+)解决:即先通过固体氧化物或酸性CO2电解制CO,再通过碱性CO电解制C2+产物。当前,CO电解制C2+产物已实现了高电流密度和高C2+选择性,但在高电流密度下单一C2+产物选择性依然较低。 本工作基于团队自主研发的碱性膜电解器(Nat. Nanotechnol.,2023),利用分子催化剂的原位电化学重构,构建出金属(铜)—有机界面,诱导形成有利......阅读全文

一氧化碳电解制乙酸的新策略

  近日,我所催化基础国家重点实验室纳米与界面催化研究中心碳基资源电催化转化研究组(523组)汪国雄研究员和高敦峰研究员团队在一氧化碳(CO)电解制备燃料和化学品研究中取得新进展,提出了通过构建金属—有机界面调控反应微环境,实现高选择性CO电解制乙酸的新策略。  二氧化碳(CO2)电解制乙烯、乙酸等

研究实现一氧化碳到乙酸的高效电化学转化

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512997.shtm中国科学技术大学教授高敏锐课题组通过原位还原铜硝石,研制出一种具有高密度堆垛层错的衍生铜催化剂。堆垛层错作为结构缺陷使铜的d带中心上移,促进d电子向一氧化碳的 2π*反键轨道的输运,

新策略可实现高选择性一氧化碳电解制乙酸

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510342.shtm

大连化物所揭示高效CO2/CO电解反应的选择性变化机制

  近日,中国科学院院士、中科院大连化学物理研究所纳米与界面催化研究组研究员包信和与研究员汪国雄、高敦峰团队,在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展。该研究揭示了碱性膜电解器中二氧化碳/一氧化碳电催化还原反应覆盖度驱动的选择性变化机制,并组装出千瓦级电堆,为二氧化碳/一氧化碳电解的

二氧化碳电解技术助力碳中和

  中科院大连化学物理研究所包信和院士、汪国雄研究员、高敦峰研究员团队在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展。团队揭示了碱性膜电解器中二氧化碳/一氧化碳电催化还原反应覆盖度驱动的选择性变化机制,并组装出千瓦级电堆,其电解性能达目前文献报道最高值。该成果可以实现钢厂尾气或者化工尾气的

我所揭示高效二氧化碳/一氧化碳电解反应的选择性变化机制

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202301/t20230116_6599706.html   近日,我所纳米与界面催化研究组(502组)包信和院士、汪国雄研究员、高敦峰研究员团队在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展,揭示了碱性膜电解器

我所提出高选择性一氧化碳电解制乙酸的新策略

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202310/t20231016_6902404.html  近日,我所催化基础国家重点实验室纳米与界面催化研究中心碳基资源电催化转化研究组(523组)汪国雄研究员和高敦峰研究员团队在一氧化碳(CO)电解制备燃料和化学品研究

大连化物所:二氧化碳电解技术取得新进展

  记者从中国科学院大连化学物理研究所(以下简称“大连化物所”)获悉,该所包信和院士、汪国雄研究员、高敦峰研究员团队在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展,可实现钢厂尾气或者化工尾气的高值化利用,为二氧化碳/一氧化碳电解技术从实验室到实际应用提供了技术基础。相关成果日前发表在国际学

高抗一氧化碳毒化的燃料电池阳极研制成功

近日,中国科学技术大学教授高敏锐课题组与教授杨晴课题组合作,通过引入少量钴改良钼镍合金催化剂,创制出一种低成本、一氧化碳耐受性好的非贵金属氢氧化催化剂。相关成果发表于《德国应用化学》,并被评选为VIP论文和卷首插画论文。 研究成果被评选为VIP论文和卷首插画论文 中国科大供图 理论计算研究发

大连化物所:二氧化碳电解技术助力实现碳中和

  为了应对全球气候变化和环境问题,越来越多的国家将“碳中和”上升为国家战略。负碳技术通过捕集、贮存和利用二氧化碳以此抵消难减排的碳排放而成为了实现碳中和的重要途径,其中近年来快速发展、极具应用前景的二氧化碳电解技术受到广泛关注。研究人员正在进行二氧化碳/一氧化碳电解性能测试  近日,中国科学院大连

乙酸乙酸铵缓冲溶液配置中需要多少冰乙酸

两者不可能配制成PH=3.2的缓冲溶液,因为PH=PKa-lg(c1/c2) 这里的PH直必须在PH=PKa+±1之间,这里的PKa=4.757,那么两者之间所配制成的缓冲溶液的PH值应该在5.757---3.757之间.

科学家称有望利用大豆根部固氮细菌将一氧化碳变燃料

  北京时间8月11日消息,据国外媒体报道,美国科学家表示,一种存在于大豆根部的固氮细菌所产生的酶可能有望成为实现以空气为动力的新型汽车梦想的关键。这种酶名为钒固氮酶(Vanadium nitrogenase),还可以将常见工业副产品一氧化碳(CO)转化为丙烷。固氮菌将一氧化碳变燃料  丙

科研团队找到乙酸“零碳”制备新路径

  二氧化碳能做衣服、制香水?还能做成乐高玩具?科技改变世界,超乎想象。  5月3日,《自然》杂志发表我国科研团队的一项最新研究成果。该研究实现了以二氧化碳为原料高效制备醋酸(又名乙酸),找到一条乙酸绿色生产新路径,揭开“零碳”制造梦想的一角。  上述成果论文作者之一、武汉理工大学材料科学与工程学院

新型光催化剂助二氧化碳高效转化为清洁燃料

  一个国际研究小组最近开发出一种新型光催化材料,可以把二氧化碳还原为一氧化碳,而不产生其他杂质副产品。这项技术将来可用于把二氧化碳高效转化为清洁燃料。  全球排放的大量二氧化碳导致了温室效应等问题,科学界一直在探索如何将空气中过量的二氧化碳回收并转化为能源或其他有用物质。之前有一些利用催化剂还原二

新突破!高抗一氧化碳毒化的燃料电池阳极研制成功

氢氧燃料电池由于比能量高和零排放等优点,有望在国家双碳战略中扮演重要角色。然而,商业铂碳催化剂极易吸附氢气燃料中的一氧化碳而导致中毒休克。特别是在碱性膜燃料电池中,铂基催化剂的氢气氧化反应动力学缓慢,其与一氧化碳毒化协同作用,加速电池性能的衰退。因此,设计并创制高活性、高抗一氧化碳毒化的新型阳极催化

乙酸可以强氧化为乙酸酐吗

不可以,但可以在浓硫酸中加热时脱水发生取代反应生成乙酸酐

乙酸储罐液位计特点

乙酸储罐液位计是根据国内外同类产品加以消化提高且按照原化工部颁布的磁性液位计标准HG/T21584-95研制生产的产品。该仪表可用于各种塔、罐、槽、球型容器和锅炉等设备的介质液位检测。乙酸储罐液位计特点;1.结构简单安装方便2.检测功能齐全3.测量范围大4.指示新颖读数直观5.耐腐蚀防爆

乙酸的制备方法

乙酸的制备可以通过人工合成和细菌发酵两种方法。生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产乙酸,尤其是醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是通过生物法制备,而发酵法又分为有氧发酵法和无氧发酵法。 在氧气充足的情况下,醋杆菌属细菌能够从含有酒精的食物中

乙酸激酶的测定

实验方法原理 ATP:乙酸磷酸转移酯(AK)乙酸+ATP→乙酰磷酸+ADP这个反应可以与丙酮酸激酶(PK)偶联,乳酸脱氢酶(LDH)反应如下:实验材料 酶样品试剂、试剂盒 三乙醇胺-HCl KOH乙酸钠ATPMgCl2磷酸烯醇式丙酮酸LDHPK仪器、耗材 分光光度计实验步骤 实验所需「试剂」具体见「

乙酸的食品用途

在食品行业中,乙酸用作酸化剂,增香剂和香料制造合成食醋时,用水将乙酸稀释至4-5%,添加各种调味剂,风味与醇造醒相似,制造时间短,价格便宜。作酸味剂,可用于复合调味料,配制醋、罐头、果冻和干酪,按生产需要适量使用。还可作曲香酒的增香剂,使用量为0.1~0.3 g/kg。

化学方法制乙酸

1、有氧发酵法 C₂H5OH + O₂ →CH₃COOH + H₂O2、无氧发酵法部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:C6H12O6==3 CH3COOH此外,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与

乙酸的制备方法

乙酸的制备可以通过人工合成和细菌发酵两种方法。生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产乙酸,尤其是醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是通过生物法制备,而发酵法又分为有氧发酵法和无氧发酵法。 在氧气充足的情况下,醋杆菌属细菌能够从含有酒精的食物中

乙酸的工业用途

工业用途1.乙酸是大宗化工产品,是最重要的有机酸之一。主要用于生产乙酐、乙酸酯及乙酸纤维素等。聚乙酸乙烯酯可制成薄膜和粘合剂,也是合成纤维维纶的原料。乙酸纤维素可制造人造丝和电影胶片。2.低级醇形成的乙酸酯是优良的溶剂,广泛用于油漆工业。因为乙酸那溶解大多数有机物,因此乙酸也是常用的有机溶剂(例如用

乙酸的制备方法

乙酸的制备可以通过人工合成和细菌发酵两种方法。生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产乙酸,尤其是醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是通过生物法制备,而发酵法又分为有氧发酵法和无氧发酵法。有氧发酵法在氧气充足的情况下,醋杆菌属细菌能够从含有酒精

乙酸的物理特性

沸点(℃):117.9凝固点(℃):16.6相对密度(水为1):1.050粘度(mPa.s):1.22(20℃)20℃时蒸气压(KPa):1.5折射率(n20ºC):1.3719折射率(n25ºC):1.3698黏度(mPa·s, 15ºC):1.314黏度(mPa·s, 30ºC):1.040蒸发

主动燃料设计技术让汽车喝上“聪明燃料”

  汽车发动机是大气有害排放物氮氧化物、PM2.5等的主要贡献者,也是二氧化碳主要排放源之一。受传统发动机燃烧理论的局限性及燃料单一理化特性局限,压燃式发动机(柴油机)的氮氧化物和碳烟排放高,火花点火式发动机(汽油机)热效率低。车用发动机面临着节能减排的重大挑战。上海交通大学燃烧与环境技术研究中心黄

生物质燃料热值仪器能检测哪些燃料

生物质燃料热值仪器也叫量热仪,只要能燃烧的生物质,其热量,量热仪都可检测。量热仪主要适用于电力、煤炭、造纸、石化、水泥、农牧、医药、科研、教学等行业或部门测定煤炭、石油、化工、食品、木材等固体或液体可燃物质的热值。

未来生物燃料电池或使用混合燃料

  据英国广播公司(BBC)报道,美国研究人员表示,通过用细胞的线粒体取代酶分解和重建生物燃料中的纤维素分子,未来的生物燃料电池或将依靠各种生物燃料组成的能量“饮料”来工作。   科学家在美国化学学会的年会上展示了一款新的生物燃料电池模型。新电池不使用酶而使用细胞中的线粒体来分解燃

乙酸酐乙酸裂解法(烯酮法)的制备方法介绍

  以丙酮或乙酸为原料,首先热分解生成中间体乙烯酮,然后将含乙烯酮气体在两个串联的填充塔中用乙酸和乙酐的混合物(循环液)淬冷同时进行化学吸收,生成乙酐: H2C=C=O+CH3COOH—→(CH3CO)2O  工艺过程如下:将乙酸在蒸发器内气化,于20kPa,负压下与磷酸催化剂混合并通过预热分解器预

乙酸流量计简介

乙酸流量计 流量计应用领域广泛。大口径仪表较多应用于给排水工程,中小口径常用于固液双相等难测流体或高要求场所,如测量造纸工业纸浆液和黑液、有色冶金业的矿浆、选煤厂的煤浆、化学工业的强腐蚀液体以及钢铁工业高炉风口冷却水控制和监漏,长距离管道煤的水力输送的流量测量和控制。小口径、微小口径常用于医药工业、