研究揭示相分离调控衰老的机制

细胞区室化是细胞内复杂生化过程有序进行的基础,也是生命演化在细胞水平的重大事件。磷脂双分子层包裹的有膜细胞器是传统认知的细胞区室。与之相对,生物大分子通过分子间多价相互作用发生相分离,在细胞内形成高度浓缩的凝聚体,可以精细驱动DNA组装、RNA转录等一系列重要的生命过程。如何识别具有重要生物学意义的凝聚体并阐明相分离与其生物功能之间的调控机理,已成为当前生命科学领域最前沿的科学问题之一。 衰老是人类慢性疾病的重要危险因素。细胞衰老是机体衰老及衰老相关疾病发生发展的主要驱动因素之一。在衰老过程中,细胞经历了剧烈的转录重塑,数千个基因的表达发生改变,涉及细胞周期阻滞、炎症因子分泌等多个分子生物学过程。然而,衰老相关的关键转录事件是否受到相分离的调控,未见报道。 11月7日,中国科学院动物研究所刘光慧研究组、曲静研究组,联合北京基因组研究所张维绮课题组,在《细胞发现》(Cell Discovery)上,在线发表了题为SGF29......阅读全文

研究揭示相分离调控衰老的机制

  细胞区室化是细胞内复杂生化过程有序进行的基础,也是生命演化在细胞水平的重大事件。磷脂双分子层包裹的有膜细胞器是传统认知的细胞区室。与之相对,生物大分子通过分子间多价相互作用发生相分离,在细胞内形成高度浓缩的凝聚体,可以精细驱动DNA组装、RNA转录等一系列重要的生命过程。如何识别具有重要生物学意

设计基因调控回路延缓衰老

人类的寿命与个体细胞老化有关。3年前,美国加州大学圣地亚哥分校的一组研究人员破译了衰老过程背后的基本机制。在确定了细胞衰老过程中遵循的两个不同方向后,研究人员通过基因操作这些过程来延长细胞的寿命。据发表在最新一期《科学》杂志上的论文,他们现在利用合成生物学扩展了这项研究,设计了一种解决方案,可防止细

人工调控作物衰老进程路径找到

  记者从西北农林科技大学获悉,该校生命科学学院和旱区作物逆境生物学国家重点实验室郁飞教授研究团队,首次在植物中发现ATG8蛋白独立于自噬途径的新功能,揭示其在模式植物拟南芥和主要粮食作物小麦中发挥的作用,为人工调控作物衰老进程提供了重要的理论支撑。该研究成果22日在《自然·植物》上在线发表。

科学家设计基因调控回路延缓衰老

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/499595.shtm

Nature子刊:细胞衰老以及衰老相关分泌表型调控新机制

  中国科学院上海营养与健康研究院的研究人员发表了题为“The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK

Nature子刊:细胞衰老以及衰老相关分泌表型调控新机制

  研究人员发现相比于非基因毒药物如长春碱、紫杉烷类,直接或间解导致DNA损伤的氮芥、核苷类似物、各种烷化剂、铂类化合物等,可以在造成细胞衰老的同时,高频激发细胞的SASP表型。  中国科学院上海营养与健康研究院的研究人员发表了题为“The senescence-associated secreto

蛋白聚集可调控生物体衰老与长寿

  记者从安徽农业大学了解到,该校生命科学学院计山明教授研究发现蛋白聚集具有正向生物学功能,能够调控生物体的衰老与长寿。该项成果日前发表在国际学术期刊《分子细胞》上。  已有研究表明,许多蛋白含有低复杂度结构域。该结构域不仅可以通过液—液相变形式调控蛋白“自我聚集”状态,同时也是阿尔茨海默症、亨廷顿

Cell子刊揭示跨世代的衰老调控

  是什么导致了衰老?一直以来这方面的证据通常都局限于对单个生物体寿命的研究;我们的细胞在我们整个一生中分裂很多很多次,最终导致了我们的器官和身体发生衰老及故障。然而来自北卡罗来纳大学医学院的一项新研究表明,我们的衰老方式有可能取决于经过数代我们从祖先处继承的细胞相互作用。   通过研究线虫的生殖

Cell子刊揭示跨世代的衰老调控

  是什么导致了衰老?一直以来这方面的证据通常都局限于对单个生物体寿命的研究;我们的细胞在我们整个一生中分裂很多很多次,最终导致了我们的器官和身体发生衰老及故障。然而来自北卡罗来纳大学医学院的一项新研究表明,我们的衰老方式有可能取决于经过数代我们从祖先处继承的细胞相互作用。   通过研究线虫的生殖

我国学者发现调控灵长类衰老的节律分子开关

  近日,中国科学院动物研究所研究员刘光慧研究组与中山大学教授项鹏研究组等合作,发现了调控灵长类衰老的节律分子开关BMAL1,揭示了核心节律蛋白BMAL1具有维持基因组稳定性、抑制转座子LINE1活化,并拮抗灵长类组织和细胞衰老的新型功能。这一研究于3月15日在线发表于《核酸研究》(Nucleic

我国学者发现调控灵长类衰老的节律分子开关

近日,中国科学院动物研究所研究员刘光慧研究组与中山大学教授项鹏研究组等合作,发现了调控灵长类衰老的节律分子开关BMAL1,揭示了核心节律蛋白BMAL1具有维持基因组稳定性、抑制转座子LINE1活化,并拮抗灵长类组织和细胞衰老的新型功能。这一研究于3月15日在线发表于《核酸研究》(Nucleic Ac

Molecular-Plant:生物钟调控叶片衰老新机制

  生物钟是生物体为适应环境昼夜周期变化而进化出的协调细胞内基因表达、代谢网络调控的分子系统,调控植物的新陈代谢、生长发育等多个过程。生物钟使植物的内源节律与外部昼夜变化的光和温度等环境条件相协调,为植物的生长发育提供竞争性优势。叶片衰老过程能将营养和能量从衰老的叶片向正在发育的组织和器官转移,以便

遗传发育所在水稻衰老延迟调控研究中取得进展

  褪黑素(Melatonin,化学名:N-乙酰-5-甲氧基色胺),又称松果体素,是人脑中央的松果腺在夜间分泌的一种激素,参与人体多种生理调节过程,包括昼夜节律和光周期反应,因此,常用于调整飞行时差和睡眠失调导致的生物钟紊乱,改善睡眠、治疗神经衰弱等。褪黑素还具有很强的抗氧化能力,可快速清除多种活性

华南植物园:荔枝果实衰老受miRNA调控

  荔枝色泽鲜艳,营养丰富,具有较高的商业价值。然而,在采收后1-2天内荔枝就会变质,主要体现为果皮褐色。调控荔枝果实衰老的因素很复杂。MicroRNAs作为负调控因子参与了几乎所有的生理过程。在最新的一项研究中,中国科学院华南植物园植物资源保护与可持续利用重点实验室从miRNA水平探究了荔枝果实衰

科研人员发现新的健康衰老调控基因

  记者3日从中国科学院昆明动物研究所获悉,该所科研人员牵头发现一个新的健康衰老调控基因ATF7,该基因可通过延缓细胞衰老和降低老年个体的炎症水平,从而促进健康长寿。  据介绍,慢性低度炎症是衰老的主要特征之一,而这种炎症与诸多衰老相关疾病密切相关,如神经退行性疾病、代谢综合征、癌症、心血管疾病等。

组蛋白修饰对衰老的调控机制研究取得重要进展

  衰老是一个基本的生物学现象,在人口老龄化日趋严重的情况下,对其调控机制的研究显得极为重要。在发育和衰老过程中,表观遗传学调控被认为可能起到重要作用,但是长久以来这方面的证据一直很少,具体作用机理还不清楚。   中科院遗传与发育生物学研究所韩敬东实验室的这项研究,通过生物化学、分子

剪接复合体调控叶片衰老新机制获揭示

  叶片作为植物的光合作用器官,对能量和物质的需求极大,直接影响着植物的生长。叶片衰老作为叶片生长的最终阶段,标志着叶片贡献的减弱。这一过程不仅受到外界环境、植物激素和叶片年龄等因素的调控,还在物质回收和再利用中发挥重要作用。叶片衰老的精细调控对于农业产出,尤其是粮食作物的产量和质量有着深远影响。根

北大长江特聘教授Plant-cell揭示叶片衰老调控机制

  来自北京大学生命科学学院的研究人员在新研究对乙稀信号通路关键转录因子ETHYLENE-INSENSITIVE3 (EIN3)进行了检测,证实EIN3是一个衰老相关基因。在拟南芥中EIN3通过抑制抑制miR164转录加速了年龄相关的叶片衰老。这些研究结果发表在植物学权威期刊The Plan

Nature-Aging:揭示调控灵长类器官衰老的表观转录组机制

m6A是目前已知的真核细胞mRNA上最常见的一类化学修饰,其建立、读取和擦除分别受到相应甲基化酶(writer)、结合蛋白(reader)以及去甲基化酶(eraser)的动态可逆调控。研究表明,m6A能够通过调节mRNA的剪接、出核、稳定性以及翻译等生命周期活动,参与调控机体的诸多生理或病理进程,包

水稻衰老调控分子机制被发现-可提高水稻产量

  中科院遗传发育所植物基因组学国家重点实验室储成才研究组梁成真博士通过对一早衰突变体的研究,首次阐明了水稻叶片衰老的分子调控机制。这一发现可显著延缓水稻叶片衰老,延长灌浆时间,从而提高水稻的结实率和千粒重,最终使水稻产量得到显著提高。上述研究成果6月20日在线发表在《美国国家科学院院刊》上。  衰

气相色谱分离原理

气相色谱分离的基本原理是利用涂在载体或者毛细管壁上的固定液,通过对不同物质的吸附和解吸能力来进行分离的。气体带着样品蒸汽,在固定液中不停的吸附和解吸,吸附能力强的样品,保留时间长,吸附能力弱的样品保留时间短。来完成不同物质的分离。气相色谱(gaschromatography简称GC)是二十世纪五十年

在两种“老化”状态间循环-,设计基因调控回路延缓衰老

人类的寿命与个体细胞老化有关。3年前,美国加州大学圣地亚哥分校的一组研究人员破译了衰老过程背后的基本机制。在确定了细胞衰老过程中遵循的两个不同方向后,研究人员通过基因操作这些过程来延长细胞的寿命。据发表在最新一期《科学》杂志上的论文,他们现在利用合成生物学扩展了这项研究,设计了一种解决方案,可防止细

发现!皮肤上皮组织衰老的新调控机制与潜在治疗标靶

  8月16日,中国科学院上海营养与健康研究所研究员张亮团队与上海交通大学医学院附属第九人民医院教授李青峰团队合作,在Nature Aging上,在线发表了最新研究成果A stress-induced miR-31–CLOCK–ERK pathway is a key driver and ther

广东医科大学揭示新的细胞衰老调控通路

   广东医科大学衰老研究所教授刘新光课题组揭示了p53/p53效应miRNAs/Ccna2通路,可作为经典的p53/p21信号通路的补充,参与调节细胞衰老进程。相关研究成果3月7日发表在《衰老细胞》(Aging Cell)杂志。  衰老是随着年龄增长而自发的生理现象。细胞衰老引起的细胞增殖能力的减

原位释氢调控衰老微环境促老龄骨修复的策略提出

  近年来,人口老龄化日益加剧。老龄化直接导致对组织修复材料和制品的颇高需求。老龄患者的组织损伤伴有衰老相关变化,衰老细胞发生DNA损伤、线粒体功能障碍、过度氧化应激反应等现象,且大量表达衰老相关分泌因子(Senescence-Associated Secretory Phenotype,SASP)

植物园揭示WRKY蛋白通过赤霉素途径调控植物衰老进程

  近日,中国科学院西双版纳热带植物园研究员余迪求团队在Molecular Plant在线发表了题为Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf s

山东农大李刚团队:叶片衰老新机制整合内外调控因素

  叶片衰老对农作物产量和质量都有着重要影响,但有关调控机制并不清晰。山东农业大学教授李刚团队发现,拟南芥光信号蛋白FHY3通过下游转录因子WRKY28调控叶片衰老,并首次建立了外界光照、植物年龄等因素协同作用下叶片衰老的分子网络,为植物叶片衰老应用提供了理论支撑。近日,《植物细胞》在线发表了这一成

科学家解析sirtuin长寿蛋白家族调控衰老的表观遗传机制

Sirtuin蛋白是一类从古细菌到人类高度保守的去乙酰化酶。Sirtuin蛋白的酶活依赖辅酶因子β-烟酰胺腺嘌呤二核苷酸NAD+,是通过热量限制延缓衰老策略的重要靶点,在多个物种中发挥着寿命调控的相关功能,被称为“长寿蛋白家族”。人类sirtuin家族的7个成员(SIRT1-7)均具有NAD+结合和

概述细胞衰老的衰老机制

  氧自由基学说认为细胞衰老是机体代谢产生的氧自由基对细胞损伤的积累。端粒学说提出细胞染色体端粒缩短的衰老生物钟理论,认为细胞染色体末端特殊结构-端粒的长度决定了细胞的寿命。DNA损伤衰老学说认为细胞衰老是DNA损伤的积累。基因衰老学说认为细胞衰老受衰老相关基因的调控。分子交联学说则认为生物大分子之

液相色谱分离机理

基本原理液相色谱根据分离机理的不同可分为:液固吸附色谱液液分配色谱离子交换色谱离子对色谱法分子排阻色谱或凝胶渗透色谱