研究揭示人类着床前胚胎发育阻滞的调控机制

近日,南方医科大学基础医学院教授李琳团队与广州医科大学附属第三医院副主任技师李磊团队合作,研究揭示了人类着床前胚胎发育阻滞伴随合子基因组激活的调控机制。相关成果发表于《自然-细胞生物学》。 “该研究系统地解析了人类着床前发育阻滞胚胎中转录组、DNA甲基化组及染色质可及性的重编程障碍,剖析了人类着床前胚胎发育阻滞的重要原因,揭示了人类合子基因组激活的关键调控因子及分子机制。”论文共同通讯作者李琳表示。 全球不孕不育率逐年升高。虽然不孕不育患者可以通过“试管婴儿”的方式拥有自己的孩子,但是仍有10%的体外受精着床前胚胎出现了发育阻滞的现象,使得“体外受精-胚胎移植”治疗效率低下。因此,深入探索人类着床前胚胎发育阻滞的机制,将有助于提高人类体外受精胚胎发育率,为临床不孕不育症的研究提供科学依据。 研究人员利用单细胞多组学技术,发现人类着床前发育阻滞胚胎中出现微管组织中心形成异常,进而诱发基因组不稳定性,包括DNA损伤增加、重......阅读全文

探讨胚胎发育的调控机制

发育生物学是生命科学的前沿领域,在最近几十年里,对发育生物学的某些基础领域有了较为深入的认识。但是发育生物学领域依然存在许多未解的问题,例如,一个单细胞——受精卵细胞是如何发育成复杂的组织、器官、系统乃至完整的有机个体。生命最大的奥秘就是探讨一个受精卵如何发育成复杂的生物体,但是,由于受精卵植入子宫

研究揭示胚胎发育关键信号调控机理

近日,中国科学院院士、中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良课题组和美国加州大学圣地亚哥分校教授孙欣课题组合作,在一项最新研究中发现,TET双加氧酶介导的DNA去甲基化与DNMT甲基转移酶介导的甲基化共同作用,能够通过调控Lefty-Nodal信号通路,控制小鼠胚胎原肠运

着床前小鼠胚胎线粒体功能障碍胚胎与胎盘发育的影响

实验概要本研究利用线粒体功能高度被抑制的体外胚胎模型,直接研究线粒体功能损伤对着床前后胚胎以及胎盘发育的影响。实验步骤1. 胚胎培养基用含4mg/ml BSA的MOPS-G1工作液收集受精卵。胚胎培养液分对照组培养液与试验组培养液(G1.2/G2.2,注:G1.2为对照组培养液;G2.2为试验组

简述干细胞探讨胚胎发育的调控机制的作用

  发育生物学是生命科学的前沿领域,在最近几十年里,对发育生物学的某些基础领域有了较为深入的认识。但是发育生物学领域依然存在许多未解的问题,例如,一个单细胞——受精卵细胞是如何发育成复杂的组织、器官、系统乃至完整的有机个体?  生命最大的奥秘就是探讨一个受精卵如何发育成复杂的生物体,但是,由于受精卵

揭示胚胎发育过程中组织水平下的调控机制

  在胚胎发育过程中,其会产生正确的3D体型(称之为形态发生过程),同时还需要进行组织重塑,细胞片会折叠并改变其几何形状,其经历的变化相当于折纸的复杂性;在早期胚胎中,形成肌肉组织(中胚层)和肠道组织(内胚层)的细胞会向内运动,外层的细胞会形成皮肤组织,日前,一项刊登在国际杂志Nature上的研究报

研究揭示组蛋白变体调控早期胚胎发育新机制

  近日,华中农业大学动物科学技术学院、动物医学院苗义良团队研究成果在Advanced Science在线发表。研究针对鼠猪早期胚胎系统地揭示了H2A.Z在早期胚胎发育过程中的动态分布规律,并首次证实了H2A.Z的分级富集参与调节哺乳动物早期胚胎的基因表达和组蛋白修饰状态。  在哺乳动物早期胚胎发育

揭示胚胎发育过程中组织水平下的调控机制

  在胚胎发育过程中,其会产生正确的3D体型(称之为形态发生过程),同时还需要进行组织重塑,细胞片会折叠并改变其几何形状,其经历的变化相当于折纸的复杂性;在早期胚胎中,形成肌肉组织(中胚层)和肠道组织(内胚层)的细胞会向内运动,外层的细胞会形成皮肤组织,日前,一项刊登在国际杂志Nature上的研究报

Nature发表:-阐述人类围着床期胚胎发育分子调控规律

   2019年8月22日,北京大学第三医院乔杰课题组和汤富酬课题组合作,在国际权威学术期刊《自然》(Nature,IF:43.07)在线发表研究成果“Reconstituting the transcriptome and DNA methylome landscapes of human imp

《Nature》发文阐述人类围着床期胚胎发育分子调控规律

  2019年8月22日,北京大学第三医院乔杰课题组和汤富酬课题组合作,在国际权威学术期刊《自然》(Nature,IF:43.07)在线发表研究成果“Reconstituting the transcriptome and DNA methylome landscapes of human impl

神经胶质胚胎发育

  大部分的胶质细胞自发育中胚胎的外胚层组织衍生而来,特别是神经管及神经脊;唯一例外者为自造血干细胞衍生而来的小胶质细胞。在成人的身体中,小胶质细胞为可自我更新的一个族群,与中枢神经系统受损时会渗入的巨噬细胞及单核细胞有明显不同。 在中枢神经系统,胶质细胞发育自神经管的脑室区(ventricular

动物所发现DNA甲基化调控胚胎左右不对称发育

DNA甲基化是常见的表观遗传修饰形式,通常发生在CpG位点中的胞嘧啶,由DNA甲基转移酶所催化,将胞嘧啶(C)转变为5-甲基胞嘧啶(5mC)。DNA甲基化在基因转录调控、染色体结构稳定性、基因印记、X染色体失活等方面发挥作用。脊椎动物早期胚胎全基因组DNA甲基化图谱研究提示DNA甲基化可能在胚胎发育

揭示哺乳动物早期胚胎发育表观遗传的进化调控规律

  在生命起始的时候,高度特化的精子和卵子结合形成全能性的受精卵。在这一过程中,表观遗传信息发生了广泛而剧烈的重编程。同时,一些表观遗传信息如基因印记会被选择性的保留下来。由于哺乳动物配子和早期胚胎材料的稀缺,关于表观遗传信息在配子向胚胎转变(parental-to-embryonic transi

动物所发现DNA甲基化调控胚胎左右不对称发育

  DNA甲基化是常见的表观遗传修饰形式,通常发生在CpG位点中的胞嘧啶,由DNA甲基转移酶所催化,将胞嘧啶(C)转变为5-甲基胞嘧啶(5mC)。DNA甲基化在基因转录调控、染色体结构稳定性、基因印记、X染色体失活等方面发挥作用。脊椎动物早期胚胎全基因组DNA甲基化图谱研究提示DNA甲基化可能在胚胎

Nature胚胎发育研究:重建人体发育时间

  京都大学(Kyoto University)的研究人员利用诱导多能干细胞(iPSC)重构了人体“分节时钟segmentation clock”,这是胚胎发育研究的重点。  这一成果公布在4月1日的Nature杂志上  从受精卵的第一个部分开始,一个复杂的蛋白质和基因网络相互作用,构建形成了我们器

研究发现自然杀伤细胞促进胚胎发育的转录调控新机制

  中国科学技术大学免疫学研究所教授魏海明、傅斌清和田志刚课题组合作研究发现,蜕膜自然杀伤细胞(NK细胞)高表达转录因子PBX1,能够增强生长因子转录,促进胚胎发育;NK 细胞 PBX1 功能异常与不明原因复发性流产病因存在相关性。研究成果于4月1日以PBX1 Expression in Uteri

研究揭示胚胎期小胶质细胞稳态调控神经发育的新机制

  神经系统(CNS)作为一个高度复杂、精密有序的结构,从早期胚胎发育的开始,就伴随着非神经组织的驻留。其中,小胶质细胞(Microglia)作为神经系统的固有免疫细胞,来源于卵黄囊中的原始巨噬细胞,并在胚胎大脑发育形成血管时侵入大脑皮层内,在神经前体细胞周围聚集形成一个特殊的微环境,并构建出独特的

刘博洋等揭示代谢体对于胚胎早期发育的重要调控机制

  胚胎早期发育过程中,卵细胞所提供的mRNA和蛋白质调控了发育的初始阶段,包括细胞核分裂、体轴建立以及胚盘形成,这种调控称为母体效应(maternal effect)。随着胚胎的不断发育,母体mRNA逐渐消耗和降解,合子基因开始表达,发育由最初的母体效应控制转变为胚胎本身的合子基因所控制,这种转变

揭示胚胎发育过程中关键信号通路的表观遗传调控机理

  哺乳动物基因组DNA中的5-甲基胞嘧啶(5mC)是一种稳定存在的表观遗传修饰,通过DNA甲基转移酶(DNMTs)催化产生。近年来研究发现,TET双加氧酶家族蛋白可以氧化5mC,从而介导DNA发生去甲基化。虽然DNA甲基化在哺乳动物基因组印记和X染色体失活等过程中具有非常重要的作用,但是DNA甲基

胚胎发育的基本过程

胚胎发育一、胚胎发育过程(蛙的受精卵发育)二、特征⒈卵裂期细胞数量不断增加,但胚胎的总体积并不增加,或有所缩小⒉桑椹胚时期及其以前的细胞,每一个细胞都具有发育成完整胚胎的潜能,属于全能细胞。当胚胎细胞数目达到32个左右时,胚胎形成致密的细胞团,形似桑葚,叫做桑葚胚(morula)。⒊囊胚中有一个含有

揭秘胚胎发育奥秘!为何发育中胚胎细胞彼此并不相同?

  近日,一项刊登在国际杂志Molecular Cell上的研究报告中,来自纽约大学的科学家们通过研究阐明了在胚胎发育(embryogenesis)过程中细胞变得彼此不同的分子机制,相关研究结果或能帮助阐明胚胎发育的遗传规律,同时也能帮助理解疾病发生和出生缺陷的原因。图片来源:commons.wik

动物所揭示胚胎期小胶质细胞稳态调控神经发育的新机制

  神经系统(CNS)作为一个高度复杂、精密有序的结构,从早期胚胎发育的开始,就伴随着非神经组织的驻留。其中,小胶质细胞(Microglia)作为神经系统的固有免疫细胞,来源于卵黄囊中的原始巨噬细胞,并在胚胎大脑发育形成血管时侵入大脑皮层内,在神经前体细胞周围聚集形成一个特殊的微环境,并构建出独特的

胚胎左右不对称发育过程中细胞周期调控纤毛形成机制

  动物胚胎如何由一个均一的卵裂球发育为具有头尾、背腹和左右等不对称特征的胚胎,是发育生物学中一个重要的研究领域。为纪念创刊125周年,Science 杂志于2005年7月提出了125个重要的科学问题。上述胚胎不对称性建立的机制,即属于其中的科学问题之一。左右不对称(left-right asymm

胚胎左右不对称发育过程中细胞周期调控纤毛形成机制

  动物胚胎如何由一个均一的卵裂球发育为具有头尾、背腹和左右等不对称特征的胚胎,是发育生物学中一个重要的研究领域。为纪念创刊125周年,Science 杂志于2005年7月提出了125个重要的科学问题。上述胚胎不对称性建立的机制,即属于其中的科学问题之一。左右不对称(left-right asymm

人工胚胎高通量方式揭示早期胚胎的发育机制

   美国索尔克(SALK)生物学研究所Belmonte课题组、德克萨斯大学西南医学中心吴军课题组及北京大学第三医院于洋课题组等在Cell杂志发表题为“Generation of blastocyst-like structures from mouse embryonic and adult ce

有汗型外胚层发育不良胚胎植入前遗传学检测分析

患者,女,出生时全身无体毛、睫毛及头发,双手及双脚皮肤过度角化,指甲发育不良,无汗毛孔,正常排汗。有汗型外胚层发育不良(hidroticectodermaldysplasia,HED)家族史,基因型为GJB6(NM_006783.4,c.263C>T杂合突变,p.A88V)。2014年结婚,婚后同居

胚胎发育后成说的概念

后成说(也称渐成说)是关于胚胎发育的一种假说。认为无论卵细胞还是精子中都不存在生物体发育的雏形,生物体的各种组织和器官都是在个体发育过程中逐渐形成的。在授精过程发现(于十九世纪后期)之前,人类对生物个体发育的认识就是两种截然不同观点—预成论(先成论)与渐成论(后成论)之争的历史。

研究证实精子指导胚胎早期发育

中科院北京基因组所研究员刘江及其研究团队,以斑马鱼为模型,发现子代会选择性地继承父本而抛弃母本的DNA甲基化图谱,从而揭示了精子对遗传使命的新贡献,有助于揭开从受精卵到个体发育的奥秘。《细胞》杂志日前以封面文章的形式特别报道了该发现。  生命得以延续的基础是遗传,父母的DNA序列信息会遗传

胚胎发育先成说的概念

先成说(也称预成说):关于胚胎发育的一种假说,认为卵细胞或是精子中存在生物体发育的雏形,即生物体的各种组织和器官。十八世纪预成论vs渐成论之争,随着细胞理论的出现、哺乳动物卵子的发现以及授精过程的显微观察而尘埃落定—先成说被彻底抛弃。

胚胎发育之谜?刘江揭开面纱

  DNA甲基化是一种重要的表观遗传修饰。以高等动物为例,个体从受精卵发育成成体的过程中,DNA甲基化图谱都是动态变化的,会调控不同的细胞往不同的方向分化。因此,建立DNA甲基化图谱对理解生殖细胞形成和胚胎发育至关重要。刘江(中)团队合影  在基金委“细胞编程和重编程的表观遗传机制”重大研究计划中,

早期胚胎发育中的单胚胎细胞基因表达(一)

Single-embryo Gene Expression for Early Embryo DevelopmentMylene Yao, M.D. Assistant ProfessorDept. of Obstetrics and Gynecology Stanford UniversityMy