北京谱仪Ⅲ实验发现质子反质子束缚态存在的新证据

北京谱仪Ⅲ实验发现了质量为1882 MeV的共振结构X(1880)或为质子-反质子束缚态。4月9日,相关研究成果作为亮点论文,发表在《物理评论快报》上。同时,美国物理学会报道了这一成果。 质子是构成原子核的基本粒子之一。而反质子是质子的反物质对称粒子,具有与质子相同的质量却带有相反的电荷。当质子和反质子相遇时,它们会相互湮灭,释放出巨大的能量。然而,有理论预测质子和反质子可以通过强相互作用力结合形成寿命极短的状态即质子-反质子束缚态。 2013年,北京谱仪Ⅲ实验在研究J/ψ粒子衰变成一个光子和3对正负π介子的过程时,发现了新共振结构X(1840)。X(1840)的质量恰好位于质子-反质子质量阈值附近,但略低于该阈值。 北京谱仪III实验采集了100亿 J/ψ衰变事例,为开展相关研究奠定了基础。利用这批数据,该研究在3(π+π-)质量谱上观测到一种反常结构。该结构由两个共振结构叠加形成,也就是2013年发现的X(1840......阅读全文

核磁共振谱仪核磁共振谱仪的组成部分

通常是用电磁铁和永久磁铁产生均匀而稳定的磁场B。在两磁极之间安装一个探头,探头中央插入试样管。试样管在压缩空气的推动下,匀速而平稳地回旋。射频振荡器线圈安装在探头中,产生一定频率的射频辐射以激发核。它所产生的射频场必须与磁场方向垂直。射频接收线圈也安装在探头中,以来探测核磁共振时的吸收信号。另有一组

核磁共振波谱仪核磁共振谱仪定义

核磁共振(nuclear magnetic resonance, NMR)是磁矩不为零的原子核,在外磁场作用自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进

北京谱仪实验发现新的Zc结构

 北京谱仪III(BESIII)实验国际合作组于2013年3月宣布发现了一个新的共振结构Zc(3900),该发现引起国际广泛关注,《物理评 论快报》、《自然》等杂志做了热点报道。因为其中含有一对正反粲夸克且带有和电子相同或相反的电荷,提示其中至少含有四个夸克,极有可能是科学家们长期寻 找的介子分

核磁共振氢谱是如何推测结构

由氢谱峰组裂分读取的相应耦合常数可能略有误差。从氢谱的最低场开始分析,谱图的最低场呈现两对双峰,各相应于两个氢原子。在1.4 1中已经分析,这是对位取代苯环的峰型,由3J起主导作用。在最低场的7. 324 ppm和7. 311 ppm的峰组(积分面积共对应两个氢原子)应该是CH2取代基的苯环两个邻位

核磁共振波谱仪核磁共振谱仪发展现状

二十世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断

核磁共振波谱仪核磁共振谱仪基本原理

1) 原子核的基本属性a.原子核的质量和所带电荷 ——是原子核的最基本属性。b.原子核的自旋和自旋角动量 ——量子力学中用自旋量子数I描述原子核的运动状态。原子核的自旋运动具有一定的自旋角动量;其自旋角动量也是量子化的,它与自旋量子数 I 间的关系为:各种核的自旋量子数质量数A原子序数Z自旋量子数I

顺磁共振谱仪技术指标

  顺磁共振谱仪是一种用于数学领域的分析仪器,于2009年11月1日启用。  技术指标  1灵敏度:Sensitivity:7*109 spins/ 0.1mT  2 分辨率≥2.35μT  3 磁场稳定性:小磁场范围:1*10-6 or 0.3μT;大磁场范围:5*10-6 or 1.5μT;  

怎样由核磁共振氢谱判断结构简式

氢谱可以传达的信息还是很多的。主要是看化学位移,峰积分面积的比值以及峰的裂分和耦合常数。由化学位移可以判断氢的类型。因为不同类型的氢,化学位移是不一样的。以“化学位移”为关键词可以收到很多内容,具体的分类自己看。峰的积分面积的比值是氢的个数的关系。活泼氢在含有活泼氢的氘代试剂中不出。峰的裂分是表示邻

核磁共振波谱仪核磁共振谱仪的性能指标分析

一、分辨率分辨率系指仪器分辨相邻谱线的能力。分辨率越高,谱线越窄,能被分开的两峰间距就越小。一般选用乙醇作标准品,测试仪器分辨率。乙醇的—CHO是一组四重峰,取其高峰的半高宽作为分辨率的指标,如图一所示。一般一起的分辨率在0.1-0.4Hz。图一   乙醇的醛基四重峰二、灵敏度灵敏度又称信噪比,是衡

北京正负电子对撞机发现新共振结构

  北京谱仪Ⅲ(BESⅢ)实验国际合作组26日在北京宣布,科学家们在最近采集的数据中发现了一个新的共振结构,暂时命名为Zc(3900)。新发现的Zc(3900)含有粲夸克和反粲夸克且带有和电子相同或相反的电荷,提示其中至少含有4个夸克,可能是科学家们长期寻找的一种奇特强子。   中国科学

核磁共振波谱仪的组成结构

  核磁共振波谱仪主要由5个部分组成。①磁铁:它的作用是提供一个稳定的高强度磁场,即 0。②扫描发生器:在一对磁极上绕制的一组磁场扫描线圈,用以产生一个附加的可变磁场,叠加在固定磁场上,使有效磁场强度可变,以实现磁场强度扫描。③射频振荡器:它提供一束固定频率的电磁辐射,用以照射样品。④吸收信号检测器

电子顺磁共振谱仪自旋标记法

  由美国的 H·M·麦康奈尔于1965年创立,系指将一种稳定的自由基(最常用者为氮氧自由基)结合到单个分子或处于较复杂系统内的分子上的特定部位,而从电子顺磁共振波谱取得有关标记物环境的信息。在进行自旋标记时,应注意到尽量保持专一性和减少对天然系统的生物特性和分子特性引起的扰动。  自旋标记物有4个

核磁共振波谱仪测量二维谱

维谱技术是七十年代后期发展起来的,它能给出物质结构的丰富信息,在解析复杂图谱和研究高阶耦合效应方面显示了很大的优越性,在过去几十年中核磁共振的发展是非常快的。(核磁共振波谱仪)已经很少有几个化学的领域与核磁波谱学的结果无紧密联系,而且它的重要性目前已深入到自然科学的所有领域,从固态物理到分子生物学,

顺磁共振谱仪的主要功能

  主要功能  顺磁共振(EPR/ESR)的研究对象是具有未偶电子的物质。例如可测试:自由基、过渡金属离子、多重态分子、晶体缺陷等。ESR测试具有高选择性、高灵敏度、不破坏样品等特性。ESR在化学、物理、生物学、医学、材料、化工、环境、食品卫生、本EPR谱仪,能够进行室温、低温(77K)、变温(11

电子顺磁共振谱仪技术指标

  基本内容  仪器名称: 电子顺磁共振谱仪  仪器型号: ER200-SRC-10/12  主要技术指标:  磁极直径:10英寸;  磁场范围:0-1.48. T;  微波 功率:0-200 mW;  微波 频率:9-10 GHz (X 波段)  电源功率:12 kW;  变温范围:110-450

电子顺磁共振谱仪的主要特性

  组成部分  电子顺磁共振波谱仪由4个部件组成:①微波发生与传导系统;②谐振腔系统;③电磁铁系统;④调制和检测系统。   主要特性  由于通常采用高频调场以提高仪器灵敏度,记录仪上记出的不是微波吸收曲线(由吸收系数X''对磁场强  度H作图)本身,而是它对H的一次微分曲线。后者的两

核磁共振谱仪的一般操作

核磁共振波谱仪的一般操作主要包括:放置样品、氘代试剂锁场、匀场、探头调谐、设置参数、数据的采集以及处理,下面分别予以介绍:  1.放置样品     首先要有足够的样品量,一般300兆核磁共振测氢谱需2-10mg,500兆核磁共振测氢谱需0.5mg以上,碳谱需要的样品量更大。选择适当核磁共振的溶解,使

核磁共振谱仪样品制备步骤以及方法

  一、核磁共振谱仪样品制备步骤以及方法样品的请求   1)样品纯度普通应>95% ,无铁屑、灰尘、滤纸毛等杂质。普通有机物须提供的样品量:1H谱>5mg,13C谱>15mg ,对聚合物所需的样品量应恰当增加。   2)普通请求,样品在某种氘代溶剂中有良好的溶解性能,送样者应提供样品的溶解度。常

核磁共振谱仪的一般操作

核磁共振波谱仪的一般操作主要包括:放置样品、氘代试剂锁场、匀场、探头调谐、设置参数、数据的采集以及处理,下面分别予以介绍:  1.放置样品     首先要有足够的样品量,一般300兆核磁共振测氢谱需2-10mg,500兆核磁共振测氢谱需0.5mg以上,碳谱需要的样品量更大。选择适当核磁共振的溶解,使

核磁共振谱仪的一般操作

核磁共振波谱仪的一般操作主要包括:放置样品、氘代试剂锁场、匀场、探头调谐、设置参数、数据的采集以及处理,下面分别予以介绍:  1.放置样品     首先要有足够的样品量,一般300兆核磁共振测氢谱需2-10mg,500兆核磁共振测氢谱需0.5mg以上,碳谱需要的样品量更大。选择适当核磁共振的溶解,使

核磁共振谱的简介

  核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”

核磁共振谱的应用

  核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用。核磁共振波谱能够精细地表征出各个氢核或碳核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系,对有机合成

核磁共振谱的原理

  根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:  1)中子数和质子数均为偶数的原子核,自旋量子数为0;  2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);  3)

核磁共振氢谱实验

实验方法原理1、核磁共振的概念具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。2、核磁共振的共振条件①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式: 3、 化学位移

核磁共振碳谱实验

实验方法原理2.去偶技术:为了简化核磁共振的谱图,把核与核之间直接、间接相互作用去掉所采取的技术。13C NMR 谱多采用宽带去偶(BB 去偶),也叫质子噪声全去偶。13C NMRBB 去偶可以是谱图简化,使交迭的偶合的多重峰,间并为单峰。每个峰代表一种类型的碳。同时,去偶可增强信噪比,多重峰的合并

核磁共振谱的简史

  核磁共振现象于1946年由E.M.珀塞耳和F.布洛赫等人发现。目前核磁共振迅速发展成为测定有机化合物结构的有力工具。目前核磁共振与其他仪器配合,已鉴定了十几万种化合物。70年代以来,使用强磁场超导核磁共振仪,大大提高了仪器灵敏度,在生物学领域的应用迅速扩展。脉冲傅里叶变换核磁共振仪使得13C、1

核磁共振谱怎么分析

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子

核磁共振谱怎么分析

之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。目前研究得最多的是1H的核磁共振,13C的核磁共振近

核磁共振谱的简介

  核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”

核磁共振谱图解析

这个是个掉书袋的工作啊,难度不大,但是内容很多。至少需要掌握官能团对化学位移的影响和解耦合现象。通过化学位移解析官能团,通过耦合产生的能级裂分推断结构中各原子之间的连接关系。这个可以一门学分至少2的课。一时半会说不清啊。chemoffice可以模拟核磁谱,如果你只是为了论文作图,不妨试试看。想了解的