氧化铟的安全信息

......阅读全文

氧化铟的用途和生产方法

用途用作光谱纯试剂和电子元件的材料等。用途主要用于作电池原材料,荧光屏,玻璃,陶瓷,化学试剂等。生产方法1.将高纯金属铟在空气中燃烧或将碳酸铟煅烧生成In2O、InO、In2O3,精细控制还原条件可制得高纯In2O3。也可用喷雾燃烧工艺制得平均粒径为20nm的三氧化二铟陶瓷粉。2.将氢氧化铟灼烧制备

氧化铟的化学性质

氧化铟(亦称三氧化二铟,In2O3)为白色或黄色粉末,加热转变为红褐色。在氢气或其他还原剂存在下,加热至400~500℃可还原成金属铟或低价铟的氧化物。在高温下分解为低级氧化物。另外,在高温下可与金属铟发生反应,低温灼烧生成的In2O3虽易溶于酸,但经过高Chemicalbook温处理得越完全就越难

研究揭示氧化铟纳米颗粒表面羟基网络

  近日,中科院大连化学物理研究所研究员侯广进团队在高场超快魔角旋转固体核磁共振(NMR)技术应用于材料结构表征研究中取得新进展。该团队借助高场超快1H MAS NMR技术,并结合17O NMR、1H-1H同核、1H-17O异核相关实验,对富羟基的氧化铟(In2O3)表面结构进行了深入分析,并利用高

氧化铟纳米颗粒表面羟基网络研究被揭示

   近日,中科院大连化学物理研究所研究员侯广进团队在高场超快魔角旋转固体核磁共振(NMR)技术应用于材料结构表征研究中取得新进展。该团队借助高场超快1H MAS NMR技术,并结合17O NMR、1H-1H同核、1H-17O异核相关实验,对富羟基的氧化铟(In2O3)表面结构进行了深入分析,并利用

氮化铟制备方法

步骤S1、提供一衬底,在所述衬底上沉积一层介电薄膜;步骤S2、对所述介电薄膜进行图案化,得到均匀排列的多个介电凸台;步骤S3、提供一反应室,将所述形成有介电凸台的衬底放入反应室中并将所述反应室抽真空;步骤S4、在所述介电凸台及衬底上Chemicalbook生长缓冲层,在介电凸台的阻挡下,所述缓冲层的

氮化铟-用途简介

氮化铟(InN)发展成为新型的半导体功能材料,在所有Ⅲ族氮化物半导体材料中,氮化铟具有良好的稳态和瞬态电学传输特性,它有最大的电子迁移率、最大的峰值速率、最大的饱和电子漂移速率、最大的尖峰速率和有最小的带隙、最小的电子有效质量等优异的性质,这些使Chemicalbook得氮化铟相对于氮化铝(AlN)

上海光机所氧化铟锡薄膜光电特性调控技术研究获进展

  近期,中国科学院上海光学精密机械研究所薄膜光学实验室在调控氧化铟锡(ITO)薄膜光电特性研究中取得进展,利用高效、可选择性的准连续(QCW)激光退火技术对ITO薄膜载流子进行调控,在基本不改变ITO薄膜导电特性的前提下,实现ITO薄膜近红外波段透过率的显著提升。相关研究成果发表在《应用表面科学》

氮化铟的结构特点

氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟纳米结构是研制相关量子器件的基础。然而,一直以来,InN纳米材料的生长往往要利用铟的氧化物或氯化物,这会在氮化铟纳米材料中引入许多杂质,致使材料的光学、电学

氮化铟的基本特性

利用金属有机化学气相淀积生长的氮化铟薄膜的光致发光特性,由于氮化铟本身具有很高的背景载流子浓度,费米能级在导带之上,通过能带关系图以及相关公式拟合光致发光图谱可以得到生长的氮化铟的带隙为0.67cV,并且可以计算出相应的载流子浓度为 n = 5.4×10cm,从而找到了一种联系光致发光谱与载流子浓度

氮化铟的应用特点

氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟(InN)是氮化物半导体材料的一种。常温常压下的稳定相是六方纤锌矿结构,是一种直接带隙半导体材料。

研究人员在氧化铟锡薄膜激光退火技术研究中获进展

  近日,中国科学院上海光学精密机械研究所薄膜光学实验室在1064nm准连续激光退火氧化铟锡(ITO)薄膜研究中取得新进展,发现准连续激光退火诱导ITO薄膜表面形貌的变化和温升的依赖关系。相关成果发表在《光学材料快报》(Optical Materials Express)上。  ITO是最重要的透明

铜铟硒电池的特点

铜铟硒CuInSe2简称CIC.CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。

电子垃圾铟的可靠分析

为了对电子垃圾进行专业回收,需要尽可能准确地了解其元素组成。本文介绍了采用ICP-OES方法对电子垃圾的重金属进行分析。 对于电子垃圾的分析是件棘手的事,从物料中获取有代表性的样品需要耗费巨大的精力,物料的不均匀性也增加了工作的难度,电子垃圾中的其他元素还可能对所采用的光谱分析方法,例如感

氮化铟-用途与制备方法

应用氮化铟(InN)发展成为新型的半导体功能材料,在所有Ⅲ族氮化物半导体材料中,氮化铟具有良好的稳态和瞬态电学传输特性,它有最大的电子迁移率、最大的峰值速率、最大的饱和电子漂移速率、最大的尖峰速率和有最小的带隙、最小的电子有效质量等优异的性质,这些使得氮化铟相对于氮化铝(AlN)和氮化镓(GaN)等