Cell重要发现:叶酸缺乏祸及数代

人们早就知道,叶酸缺乏可引起子女严重的健康问题,包括导致脊柱裂、心脏缺陷和胎盘异常。一项最新研究研究揭示,对于叶酸代谢至关重要的一个基因发生突变不仅会影响下一代,还可以损害接下来好几代的健康。此外,研究还阐明了发育过程中的叶酸分子机制。这些研究结果发表在《细胞》(Cell)杂志上。 研究的领导者、剑桥大学滋养层研究中心Erica Watson博士说:“尽管我们的研究焦点是破坏叶酸分解和代谢的遗传突变,但我们认为饮食中叶酸缺乏也将会对数代造成健康影响。” 叶酸缺乏会损害发育,这一点早已众所周知。因此,包括加拿大和美国在内的许多国家,都已实施叶酸营养强化计划要求将叶酸添加到谷类制品之中。然而,直到现在对于叶酸缺乏引起后代各种健康问题的机制仍知之甚少。 Watson博士说:“强化计划减小了叶酸缺乏带来的健康效应风险,但却并没有完全消除它们。根据我们的研究,现在我们认为也许要经历数代才能消除叶酸缺乏引起的健康问......阅读全文

基因测试可帮助发现叶酸代谢的遗传缺陷

  5月11日,北京博奥晶典生物技术有限公司在一场“走进生命科学,关爱妇幼健康”体验日活动上展示了多项基因检测技术,比如一种叶酸代谢能力的基因检测,可以通过收集口腔上皮黏膜脱落细胞,直接发现受检者叶酸代谢的遗传缺陷。   现场专家介绍,精准医疗的重点不在“医疗”而在“精准”。精准医疗的概念被大众越

基因测试可帮助发现叶酸代谢的遗传缺陷

  5月11日,北京博奥晶典生物技术有限公司在一场“走进生命科学,关爱妇幼健康”体验日活动上展示了多项基因检测技术,比如一种叶酸代谢能力的基因检测,可以通过收集口腔上皮黏膜脱落细胞,直接发现受检者叶酸代谢的遗传缺陷。   现场专家介绍,精准医疗的重点不在“医疗”而在“精准”。精准医疗的概念被大众越

叶酸利用能力遗传检测

叶酸是什么叶酸(Folic acid)维生素B复合体之一,是米切尔(H.K.Mitchell,1941)从菠菜叶中提取纯化的,故而命名为叶酸。是合成核酸所必须的元素,是细胞生长和组织修复所必需的物质,更是胚胎发育过程中不可缺少的营养素。有“优生优育的营养素”美誉,对孕妇尤其重要。叶酸利用能力遗传检测

叶酸代谢障碍遗传检测

叶酸代谢障碍:是指由于叶酸代谢通路中的关键基因突变导致酶活性降低,使得已被机体吸收的叶酸不能正常发挥生理功能,一碳单位传递受阻,导致神经管缺陷、流产、妊高症等发病风险增高。一般情况下,叶酸代谢障碍表现为叶酸的相对不足,即摄入正常剂量的叶酸仍无法满足机体对叶酸的需求。叶酸代谢障碍遗传检验:是通过分子生

外媒:遗传不仅靠基因-表观遗传也扮演重要角色

  核心提示:表观遗传学是修改DNA的活性但并不改变核苷酸序列的化学反应和其他进程的总称。表观遗传标记并不是基因。   7月24日报道 外媒称,遗传不是仅通过基因传递。一项新研究证实,表观遗传指令也会调节后代的基因表达。   据阿根廷《21世纪趋势》周刊网站7月22日报道,该研究由德国弗赖堡马克

外媒:遗传不仅靠基因-表观遗传也扮演重要角色

  核心提示:表观遗传学是修改DNA的活性但并不改变核苷酸序列的化学反应和其他进程的总称。表观遗传标记并不是基因。   7月24日报道 外媒称,遗传不是仅通过基因传递。一项新研究证实,表观遗传指令也会调节后代的基因表达。   据阿根廷《21世纪趋势》周刊网站7月22日报道,该研究由德国弗赖堡马克

什么是表观遗传?

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silen

新方法可无损破译基因表观遗传密码

  美国宾夕法尼亚大学研究人员开发出一种破译DNA表观遗传密码的新方法,利用DNA脱氨酶进行基因测序。他们8日在《自然·生物技术》杂志上发表论文称,新测序方法克服了沿用数十年的亚硫酸氢盐测序法的局限,将有助于更深入理解肿瘤生成等复杂生物过程。  表观遗传指的是在基因核苷酸序列不发生改变的情况下,基因

Science新闻:表观遗传学印记让基因“窒息”

  吸烟留下的可不仅仅是衣服和手指上的烟味,现在一项新研究提出了强有力的证据指出,吸烟能够通过表观遗传学修饰影响增加癌症发病风险的基因活性。这一发现,为研究者们提供了一个评估吸烟人群癌症风险的新工具。   我们DNA上的化学修饰可以影响基因的功能,决定基因的开启和关闭,这些化学修饰被称为表观遗传学

Nature:表观遗传与基因调控的新发现

  最近在《Nature》杂志发表的一篇研究中,瑞士Friedrich Miescher生物医学研究所(FMI)的Dirk Schübeler和他的研究小组,描述了转录因子和DNA表观遗传修饰之间的相互作用,会对基因调控有何影响。科学家发现,转录因子可以通过DNA甲基化模式的改变而间接合作:通过去除

表观遗传学开关控制基因节律性转录

  当夜晚降临,我们就会慢慢入睡,这是受昼夜节律circadian cycle影响的结果,我们的每个器官甚至基因中都存在这样的节律。   Salk研究所的科学家发现,表观遗传学修饰是使肝脏活性与昼夜节律同步的遗传学开关。这一发现能够帮助人们进一步了解高血糖、高胆固醇等健康威胁背后的机制,文章于近期

叶酸代谢遗传检测的意义

   随着人类基因组计划和国际人类基因组单体型图计划的完成,在发达国家基因检测技术也逐渐成为健康医疗体系中的一部分,并已证明能有效降低个人患病风险,同时节约了医疗开支。    中国疾病预防控制中心妇幼保健中心于2007年先后三次向全国妇幼保健院发出关于开展“妇幼保健遗传检测服务项目”的函,强调:为了

表观遗传研究指南(二)

  今年九月,对于基因组研究者们来说是一个具有纪念意义的月份,因为美国人类基因组研究院(NHGRI)资助的ENCODE项目在Nature,Genome Biology,Genome Research等杂志上公布了三十多份论文,还有在Science,Cell,以及the Journal of Bi

什么是表观遗传调节?

中文名称表观遗传调节英文名称epigenetic regulation定  义与DNA排列顺序的变化无关的,调节基因表达的频率、速度或者表达度的过程。如DNA甲基化、组蛋白修饰等。这种调节不能通过种系或生殖细胞传递,但可通过细胞分裂传给子代,在静止细胞的细胞质中也能稳定地自我繁殖。这种调节的失误或减

表观遗传学修饰

组蛋白修饰 表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因

关节炎中的表观遗传学基因开关

  一项新研究发现DNA甲基化是控制MMP13酶基因的开关,而MMP13酶具有重要的软骨破坏作用。文章发表在FASEB Journal杂志的网站上。   骨关节炎是一种退行性关节疾病,该疾病的典型症状是患者关节软骨持续不可逆的损失,这主要是由于基质金属蛋白酶MMP13破坏基质中的II型胶原引起

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

下一代转基因工具:表观遗传调控

  2015年,加州大学圣地亚哥分校的生物学家Ethan Bier和Valentino Gantz提出了一项突破性技术,这种名为“活跃遗传(active genetics)”的新技术打破了父母向后代传递遗传性状的几率(超越孟德尔式遗传)。  今年2月,他们和Shannon Xu在《eLife》发表文

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

新CRISPR转基因鼠体内基因表达和表观遗传修饰精准调控

  CRISPR-Cas9系统为基础的基因编辑技术极大的推动了生物医学研究的进步。除直接编辑基因组DNA外,研究者还将失活型Cas9(dCas9)与转录调控元件或染色体修饰元件融合,构建出可实现转录和表观遗传学修饰调控的新工具如CRISPRa(转录激活工具),CRISPRi(转录抑制工具)以及CRI

Nature子刊:发现全新表观遗传学基因调节机制

  一个由KAUST领导的国际团队在研究成年人基因组及其所处环境相互作用的过程中发现了一种调节基因活性的表观遗传学机制。  来自KAUST的Valerio Orlando实验室一直在研究Ezh1的作用,该基因在成熟组织中的功能研究在近25年来毫无进展。和它的姊妹基因Ezh2一样,Ezh1及其伴侣蛋白

新的基因编辑领域突破口——表观遗传调控(二)

2.  神经系统疾病▼  致病机理:神经细胞中由于遗传缺陷导致的疾病▼  代表工作:同时另一项突破性的工作则使用一种SunTag(dCas9-10xGCN4)系统融合多个拷贝的转录激活蛋白(p65-HSF1),构建了一种Cre依赖性的SunTag-p65-HSF1(SPH)转基因小鼠模型。使用AAV

新的基因编辑领域突破口——表观遗传调控(一)

几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白修饰

Cell重要发现:叶酸缺乏祸及数代

  人们早就知道,叶酸缺乏可引起子女严重的健康问题,包括导致脊柱裂、心脏缺陷和胎盘异常。一项最新研究研究揭示,对于叶酸代谢至关重要的一个基因发生突变不仅会影响下一代,还可以损害接下来好几代的健康。此外,研究还阐明了发育过程中的叶酸分子机制。这些研究结果发表在《细胞》(Cell)杂志上。   研究的

什么是表观遗传学

是研究不涉及DNA序列改变的基因表达和调控的可遗传修饰,即探索从基因演绎为表型的过程和机制的一门新兴学科。遗传学是指基于基因序列改变所 致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等。而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组

表观遗传“淘金热”袭来

  一些奇思妙想似乎会突然冒出来,不过2008年,Chuan He却有意地寻找这样一个想法。美国国立卫生研究院当时刚刚启动资金支持高风险、高影响项目,伊利诺伊州芝加哥大学化学家He打算申请。不过,他首先需要一个好的领域。  他一直在研究修复损伤DNA的蛋白家族,他开始怀疑这些酶可能也会对RNA产生作

-Science:父亲“原罪”之表观遗传

  如果你患有糖尿病、癌症或甚至有心脏问题,或许你应该将其归罪于父亲或甚至祖父的行为或环境。近年来,科学家们已证实甚至在母亲怀上后代之前,父亲的生活经历包括食物、药物、暴露于毒性产物、压力等都可以影响他的孩子、甚至孙子的发育和健康。  然而,尽管科学家们在这一领域已开展了十年的研究工作,对于延续数代

Nature发布表观遗传重要发现

  营养繁殖是无性繁殖的一种形式,常用于商业化大规模生产园林植物和树,因为它能够实现高性能、基因相同个体的快速繁殖。然而对于某些物种,营养繁殖有着严苛的要求,需要技术先进的无菌培养来生成可以发育为苗木的克隆胚胎。而有一部分以这种方式繁殖的植物会因遗传变异或表观遗传改变显示出发育异常。  在9月9日的

表观遗传调节的概念介绍

中文名称表观遗传调节英文名称epigenetic regulation定  义与DNA排列顺序的变化无关的,调节基因表达的频率、速度或者表达度的过程。如DNA甲基化、组蛋白修饰等。这种调节不能通过种系或生殖细胞传递,但可通过细胞分裂传给子代,在静止细胞的细胞质中也能稳定地自我繁殖。这种调节的失误或减

Science:祖母的表观遗传“原罪”

  如果一名孕妇营养不良,由于所谓的“表观遗传”效应,她的孩子罹患肥胖症和2型糖尿病的风险要高于一般人。一项小鼠新研究证实,妊娠期的这种营养“记忆”还可通过雄性后代的精子传递给下一代,提高她们孙辈的疾病风险。换句话说,其印证了一句老的格言“你祖母的饮食都会影响你”。这项研究还对表观遗传效应如何代代相