清华大学在锂键化学研究中取得重要进展
清华新闻网8月29日电 水在常温下呈液态、冰的密度比水小、DNA的双螺旋结构等,这些日常生活中无处不在的现象背后都有氢键的存在。由于锂元素与氢元素的相似性,锂键作为与氢键相对应的化学键于上世纪50年代被提出,但并未受到广泛关注。随着锂元素在电池领域的广泛应用,锂键概念重新焕发生机。电解液中的锂与电极表面原子以及电解液组分间均能发生相互作用,从而形成锂键,这一化学作用对抑制多硫化物的穿梭效应、锂的形核过程和锂离子的迁移过程等都有重要影响,并最终影响电池的实际性能。因此,对锂键的探索研究,对理解锂电池中的微观机理,提升电池宏观性能,促进锂化学领域科学认识的突破以及下一代先进电池体系的开发都具有重要意义。近年来,清华大学化工系张强课题组在锂键化学研究方面开展了一系列原创性研究。2016年,张强课题组首次提出并系统研究了锂硫电池中的锂键。研究发现,锂键键长大于锂的离子键、键能小于锂的离子键,同时锂键作用双方间电荷转移不显著,有......阅读全文
清华大学在锂键化学研究中取得重要进展
清华新闻网8月29日电 水在常温下呈液态、冰的密度比水小、DNA的双螺旋结构等,这些日常生活中无处不在的现象背后都有氢键的存在。由于锂元素与氢元素的相似性,锂键作为与氢键相对应的化学键于上世纪50年代被提出,但并未受到广泛关注。随着锂元素在电池领域的广泛应用,锂键概念重新焕发生机。电解液中的锂与电极
清华大学张强课题组锂金属负极研究系列进展!
随着电动汽车、便携式电子器件、智能手机、电动工具等的快速发展与广泛应用,发展高能量密度的二次电池成为了当前社会的热点需求之一。锂金属负极由于拥有高理论比容量(3860 mAh g-1)和低电极电位(相对标准氢电极-3.040 V)方面的优势,是下一代高比能电池负极材料的理想选择之一。但是,锂金属
JACS:研究发现金属间最短化学键
美国化学家近日创造了一项新的世界纪录,他们发现了迄今为止金属间最短的化学键,这一化学键产生于两个铬原子之间。相关论文发表于《美国化学学会会志》(JACS)上。 图片说明:一种新分子中两个铬原子间的化学键长度创造了最短纪录。(图片来源:Klaus Theopold) 这一最短距离究竟是多少
清华大学仪器共享平台WESTBOND-键合机
仪器名称:键合机仪器编号:19019277产地:生产厂家:WESTBOND, INC型号:7476D出厂日期:购置日期:2019-10-29所属单位:物理系>离子束刻蚀实验室放置地点:理科楼 C-207固定电话:010-62772764固定手机:13552113513固定email:jianglin
清华大学仪器共享平台SET-倒装键合机
仪器名称:倒装键合机仪器编号:21018517产地:法国生产厂家:SET型号:FC150出厂日期:购置日期:2021-09-08所属单位:集成电路学院>微纳加工平台>封装工艺放置地点:集成电路学院一层微纳平台固定电话:010-62798268固定手机:13811838182固定email:zheng
碱土金属元素化学键研究取得重要进展
在国家自然科学基金项目项目(项目编号:21688102、21433005、 21703099)等资助下,复旦大学化学系周鸣飞教授课题组和南京工业大学以及德国马德堡大学的Gernot Frenking教授课题组合作,在主族元素化学键研究方面取得重要进展,相关成果以“Observation of A
化学键合固定相
化学键合固定相 :化学键合固定相是利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而构成各种性能的固定相。
细胞化学基础疏水键
疏水键是多肽链上的某些氨基酸的疏水基团或疏水侧链(非极性侧链),由于避开水而造成相互接近、粘附聚集在一起。它在维持蛋白质三级结构方面占有突出地位。
锂金属的化学特性
锂电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,锂电池已经成为了主流。
液相色谱仪化学键合固定相键型
液相色谱仪化学键合固定相是采用硅胶表面键合技术对硅胶微粒表面进行修饰(硅烷化),使硅胶表面带有不同的功能团而形成的固定相。目前在色谱填料中,键合相占78%左右(其中C18占反相色谱的72%),硅胶占10%左右。一、硅酸酯型键合相(≡Si-O-C):最先用于液相色谱的健合相。醇与硅羟基进行酯化反应制得
价键理论氢分子中的化学键的介绍
量子力学计算表明,两个具有电子构型的H彼此靠近,两个1s电子以自旋相反的方式形成电子对,使体系的能量降低。吸热,即破坏H2的键要吸热(吸收能量),此热量D的大小与H2 分子中的键能有关。计算还表明,若两个1s电子保持以相同自旋的方式,则r越小,V越大。此时,不形成化学键。H2中的化学键可以认为是
大连化物所惰性化学键催化活化研究取得新进展
二环吡啶酮类化合物合成示意图 由中科院大连化学物理研究所余正坤研究组、孙承林研究组和陈吉平研究组合作的惰性化学键催化活化研究最近取得新进展。 通过在烯烃分子的一端引入给电子的二硫烷基、在另一端引入吸电子的羰基来活化内烯烃碳-氢键的策略,研究人员高效实现了
细胞化学词汇磷酸单酯键
中文名称:磷酸单酯键英文名称:phosphomonoester bond定 义:单核苷酸分子中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)
制备化学键合相色谱仪键合固定相的化学反应
根据键合有机分子的结构,用于制备化学键合相色谱仪键合固定相的化学反应可分为硅胶与醇类反应、硅胶与胺类反应、硅胶与卤代烷反应和硅胶与有机硅烷反应等。一、硅胶与醇类反应:利用硅胶的酸性特性,使硅胶表面的硅羟基与正辛醇、聚乙二醇 400 等醇类进行酯化反应生成键合固定相。此类键合固定相具有良好的传质特性和
制备化学键合相色谱仪键合固定相的化学反应
根据键合有机分子的结构,用于制备化学键合相色谱仪键合固定相的化学反应可分为硅胶与醇类反应、硅胶与胺类反应、硅胶与卤代烷反应和硅胶与有机硅烷反应等。一、硅胶与醇类反应:利用硅胶的酸性特性,使硅胶表面的硅羟基与正辛醇、聚乙二醇400等醇类进行酯化反应生成键合固定相。此类键合固定相具有良好的传质特性和高柱
北理工在《德国应用化学》发表金属锂负极研究论文
近日,北京理工大学前沿交叉科学研究院黄佳琦特别研究员课题组在金属锂负极保护方面研究取得新进展,相关研究成果以《Solvation Chemistry of Lithium Nitrate in Carbonate Electrolyte for High‐Voltage Lithium Me
共价键的化学性质
化学变化的本质是旧键的断裂和新键的形成,化学反应中,共价键存在两种断裂方式,在化学反应尤其是有机化学中有重要影响。均裂与自由基反应共价键在发生均裂时,成键电子平均分给两个原子(团),均裂产生的带单电子的原子(团)称为自由基,用“R·”表示,自由基具有反应活性,能参与化学反应,自由基反应一般在光或热的
化学键合固定相的特点
化学键合固定相的特点 :固定相不易流失,柱的稳定性和寿命较高;能耐受各种溶剂,可用于梯度洗脱;表面较为均一。没有液坑,传质快,柱效高;能键合不同基团以改变其选择性。例如,键合氰基、氨基等极性集团用于正相色谱法,键合离子交换基团用于离子色谱法,键合C2,C4,C6,C8,C18,C16,C18,C22
共价键的化学性质
化学变化的本质是旧键的断裂和新键的形成,化学反应中,共价键存在两种断裂方式,在化学反应尤其是有机化学中有重要影响。均裂与自由基反应共价键在发生均裂时,成键电子平均分给两个原子(团),均裂产生的带单电子的原子(团)称为自由基,用“R·”表示,自由基具有反应活性,能参与化学反应,自由基反应一般在光或热的
胞化学基础氢键的键能数据
氢键的结合能是2—8千卡(Kcal)。氢键是一种比分子间作用力(范德华力)稍强,比共价键和离子键弱很多的相互作用。其稳定性弱于共价键和离子键。常见氢键的平均键能与键长数据为:常见氢键的平均键能与键长
亲脂性的化学键结基本介绍
亲脂性是指一个化合物融解在脂肪、油、脂质或非极性溶剂的能力。这些非极性溶剂本身就亲脂,所以这告诉我们"喜欢什么就溶于什么"。因此亲脂性的物质就会溶在亲脂的溶剂,亲水性的物质就会溶于亲水性的溶剂内。 当我们以伦敦力的角度来看,亲脂性、疏水性和非极性可以互相替换,然而,亲脂性和疏水性并不是同义字,
细胞化学基础二硫键简介
二硫键(disulfide bond) 是连接不同肽链或同一肽链中,两个不同半胱氨酸残基的巯基的化学键。二硫键是比较稳定的共价键,在蛋白质分子中,起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界因素影响的稳定性就愈大。
细胞化学词汇磷酸二酯键
磷酸二酯键是一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。磷酸二酯键成了两个醇之间的桥梁。例如前一个核苷酸的羰基中的3碳上'—OH(羟基)和后一个核苷酸的5'—磷酸基形成酯键,此处的磷酸基同时与前后两个羟基形成酯键,故称磷酸二酯键。依次连下去,形成多核苷酸链,即核酸大
细胞化学基础疏水键的作用
蛋白质分子中许多氨基酸的疏水侧链有形成疏水键的倾向,由于疏水效应,这些疏水残基常被水驱入蛋白质分子内总聚集成簇,带动肽链盘曲折叠,对蛋白质三、四级结构的形成和稳定起重要作用。
锂电池研究:离子溶剂模型从单溶剂拓展至多溶剂体系
开发先进储能器件、高效利用可再生能源、构建可持续发展能源体系是实现“碳中和”目标的迫切需求。传统的锂离子电池技术由于能量密度等方面的限制,越来越难以满足未来社会发展的能源需求。发展基于金属锂负极的下一代锂电池技术成为了当前研究重点,但同时对电解液设计提出了更高的要求。深入理解电解液溶剂化结构和构
“新型锂硫化学储能电池关键技术研究”通过验收
近日,中科院大连化物所承担的国家“863计划”先进能源技术领域“新型锂硫化学储能电池的关键技术研究”课题通过了由科技部高技术中心能源处组织的技术验收。 该所陈剑课题组攻克了一系列电池工程技术难题,在电池关键材料、部件、电池及电池组技术等方面取得一系列成果,所开发的具有自主知识产权的“高比能量、
全新化学反应率先破坏最强化学键
一种全新化学反应完全颠覆了传统反应中先破坏最弱化学键的模式,而先朝最强的化学键“开刀”,并可以在化学合成中形成全新的中间体。这一颠覆传统的化学反应模式证明,化学家们完全可以开创性地获得常规方法无法企及的一些化合物。相关论文发表在《美国化学协会杂志》上。 美国普林斯顿大学的研究人员选用催化剂对系
化学键合相色谱仪键合固定相的制备方法
化学键合相色谱仪键合固定相是利用化学反应将有机分子通过共价键键合在载体表面上,形成均一、牢固的单分子液膜而构成的固定相。一、键合固定相的分类:载体几乎都用硅胶。1、疏水基团:不同链长的烷烃(C8 和 C18)和苯基等。2、极性基团:氨丙基、氰乙基、醚和醇等。3、离子交换基团:作为阴离子交换基团的胺基
化学键合相色谱仪键合固定相的制备方法
化学键合相色谱仪键合固定相是利用化学反应将有机分子通过共价键键合在载体表面上,形成均一、牢固的单分子液膜而构成的固定相。一、键合固定相的分类:载体几乎都用硅胶。1、疏水基团:不同链长的烷烃(C8和C18)和苯基等。2、极性基团:氨丙基、氰乙基、醚和醇等。3、离子交换基团:作为阴离子交换基团的胺基、季
忍不住抱走的超萌化学键~~
小编近日在网上看到一组超萌化学键组图,立刻分享给大家,希望能有绘画高手补充其他萌萌哒的化学键!离子键共价键金属键 网友评论: