研究开发出植物高效精准大片段DNA操纵及染色体编辑技术

基因组结构变异(SV)是植物遗传多样性的重要来源,也是基因组进化和优异农艺性状形成的重要驱动力。因此,探究如何高效精准地操纵植物基因组结构变异对植物性状改良和农业生物育种具有重要意义。目前,基于CRISPR/Cas的基因组编辑技术在植物性状改良中得到广泛应用。而这些技术的编辑尺度大部分情况下局限于少数几个核苷酸的替换、删除和插入。尽管CRISPR/Cas9结合双sgRNAs能够在植物中实现基因组大片段DNA的删除和倒位等操纵,但效率较低。同时,由于该策略依赖于DNA双链断裂(DSBs)产生,编辑产物常常引入较多非预期的编辑,甚至导致复杂的染色体重排。因此,开发不依赖于DSBs、高效且精准的植物大片段DNA和染色体操纵技术,对植物遗传改良具有重要意义,是植物染色体工程和生物育种技术创新的迫切需求。近日,中国科学院遗传与发育生物学研究所王延鹏研究组与中国农业大学小麦研究中心科研人员合作,开发了高效且精准的植物基因组大片段DNA操纵技......阅读全文

简述乳糖操纵子的应用

  1977年10月,H. W. Boyer博士的研究小组,将化学合成的人脑激素,即生长激素释放抑制因子(somatostatin)的基因,连接在乳糖操纵子上,并导入大肠杆菌细胞。这是第一个以DNA重组技术完成的基因工程。人类首次成功地将一种高等真核生物的基因移入原核生物的细胞内,并能转录和转译,产

关于色氨酸操纵子的介绍

  色氨酸操纵子负责调控色氨酸的生物合成,它的激活与否完全根据培养基中有无色氨酸而定。当培养基中有足够的色氨酸时,该操纵子自动关闭;缺乏色氨酸时,操纵子被打开。色氨酸在这里不是起诱导作用而是阻遏,因而被称作辅阻遏分子,意指能帮助阻遏蛋白发生作用。色氨酸操纵子恰和乳糖操纵子相反。

乳糖操纵子的作用机制

抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因转录也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 [2] 诱导作用:在乳糖存在情况下,乳糖代谢产生异构乳糖(alloLactos

关于色氨酸操纵子的简介

  色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

操纵基因和调节基因的鉴别

野生型的操纵子以被调节的方式进行表达,调节系统若发生突变可能使表达停止或者在没有诱导物存在时仍然表达。前者称为不可诱导性(uninducible)突变;后者对调节没有反应能力,无论诱导物是否存在都进行表达,故称为组成型突变(constitutive mutants)。操纵子调节系统的成份通过突变已被

操纵基因和调节基因的鉴别

野生型的操纵子以被调节的方式进行表达,调节系统若发生突变可能使表达停止或者在没有诱导物存在时仍然表达。前者称为不可诱导性(uninducible)突变;后者对调节没有反应能力,无论诱导物是否存在都进行表达,故称为组成型突变(constitutive mutants)。操纵子调节系统的成份通过突变已被

概述乳糖操纵子的结构

  细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中

操纵子作为转录的基元介绍

  操纵子包含一个或以上的结构基因,这个结构基因会被转录成为一个多基因性的mRNA。一个单一的mRNA分子会为多于一个蛋白质编码。在结构基因上游的是启动子序列,能给核糖核酸聚合酶(RNA聚合酶)提供结合位点及引发转录。在启动子附近的是一组DNA称为操纵基因。操纵子亦会包含调控基因,如阻遏基因能为调控

乳糖操纵子的结构特点

细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。乳

著名遗传学家:用CRISPR重塑基因组

  美国国家科学院院刊PNAS杂志上发表的一项研究显示,用CRISPR/Cas9修饰垃圾DNA中的一个碱基,会改变基因组大量片段的折叠方式。这意味着CRISPR/Cas9有望用于治疗以基因组错误折叠为特征的疾病。  “实施靶向性手术可以重塑人类基因组,精确控制其折叠形式,”文章的通讯作者,Baylo

超小型编辑器实现动物高效基因编辑

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519726.shtm

2023年度CRISPR基因编辑领域十大研究进展,张锋实验室遥遥领先

  这项研究凸显了CRISPR前所未有的多样性和灵活性,也表明了大多数CRISPR系统是罕见的,只在不寻常的细菌和古细菌中发现。随着可用来搜索数据库的不断增长,可能还有更多罕见系统被发现。  诞生于2012年的CRISPR基因编辑技术,可能是21世纪以来生命科学领域最受关注的科学突破。2020年,C

生物物理所等研究团队实现精准修正胶质瘤致癌基因突变

  胶质瘤(Glioblastoma, GBM))是一种严重威胁人类健康的脑部恶性肿瘤,目前尚缺乏有效的防治手段,以往的研究报道83%原发性胶质瘤携带端粒酶基因(TERT)启动子区域的致癌突变(Killela PJ, et al.PNAS 2013, PMID: 23530248),该突变重新激活端

王猛郑平王钰等开发基于碱基编辑的多基因表达调控技术

  Nat Commun   同时对微生物细胞的多个基因进行组合表达调控,是研究微生物复杂代谢调控,重构代谢路径的重要技术。目前常用技术是基于DNA克隆,在体外构建表达调控元件(启动子或RBS)与目的基因的质粒文库,然后转化进入细胞进行表型筛选。受限于克隆效率和DNA转化效率,该方法仅适用于单个或少

Y染色体的染色体结构

Y染色体(Y chromosome)是决定生物个体性别的性染色体的一种。男性的一对性染色体是一条x染色体和一条较小的y染色体。在雄性是异质型的性决定的生物中,雄性所具有的而雌性所没有的那条性染色体叫Y染色体。由于Y染色体传男不传女的特性,因此在Y染色体上留下了基因的族谱,Y-DNA分析现在已应用于家

x染色体的染色体结构

研究确认了X染色体上有1098个蛋白质编码基因,有趣的是,这1098个基因中只有54个在对应的Y染色体上有相应功能的等位基因,而且Y染色体比X染色体小得多。在2003年6月完成的详细分析研究报告中指出Y染色体上仅有大约78个基因,Y染色体甚至被戏称为X染色体的“错误版本”。X染色体中大约有10%的基

基因突变概述(二)

  (二)移码突变  移码突变(frame-shift mutation)是指DNA链上插入或丢失1个、2个甚至多个碱基(但不是三联体密码子及其倍数),在读码时,由于原来的密码子移位,导致在插入或丢失碱基部位以后的编码都发生了相应改变。移码突变造成的肽链延长或缩短,取决于移码终止密码子推后或提前

科研人员实现精准修正胶质瘤致癌基因突变

  胶质瘤(Glioblastoma, GBM))是一种严重威胁人类健康的脑部恶性肿瘤,目前尚缺乏有效的防治手段,以往的研究报道83%原发性胶质瘤携带端粒酶基因(TERT)启动子区域的致癌突变(Killela PJ, et al.PNAS 2013, PMID: 23530248),该突变重新激活端

如何协调两种酶从染色体上去除RNADNA杂合结构?

  由分子生物学研究所的Brian Luke和Helle Ulrich教授领导的两个研究小组已经破译了如何协调两种酶RNase H2和RNase H1从染色体上去除RNA-DNA杂合结构。  RNA-DNA杂合体对于促进正常的细胞活动(如基因调控和DNA修复)很重要,但过多也有DNA受损的风险,并可

基因表达调控的方式有哪些

基因表达调控分为很多水平:1.DNA、染色体水平调控:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。2.转录水平调控(主要调控方式):转录起始、延伸、终止均有影响。原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。3.转录后水平调控:主要指真核生物原初转录产物经

基因编辑公司遭遇滑铁卢,昨日明星成为今日“裹脚布”

•基因编辑“工具箱”加速迭代之际,人们仍在期待一款真正安全有效的基因编辑疗法落地。•一位美国医疗行业分析师接受采访时也表示,面对罕见病市场、技术和伦理问题,基因编辑技术的资本投资确实到了需要慢下来的时候了。全球首家上市的基因编辑明星公司Editas Medicine近期宣布,暂停第一个管线EDIT-

Nature-Biotechnology:新研究拓宽碱基编辑器的靶向范围

  基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas9是由一种原始的细菌免疫系统改编而成的,它的作用方式是首先在基因组的一个靶位点上切割

Nature:重大进展!首次揭示端粒t环保护染色体机制

  在一项新的研究中,来自英国弗朗西斯克里克研究所等研究机构的研究人员发现位于端粒末端的环状结构(loop)起着至关重要的保护作用,可阻止染色体发生不可挽回的损伤。他们揭示了这种称为t环(t-loop)的环状结构的缠绕和解开如何阻止染色体的末端被识别为存在DNA损伤,而且还揭示了这一过程是如何受到调

天差地别!CRISPR导致的DNA断裂后修复与理论差距巨大

  尽管世人对CRISPR-Cas9基因编辑抱有很高期望,科学家们仍对其人体临床应用持怀疑态度。为什么呢?  “基因编辑非常强大,但是到目前为止还有许多问题和错误需要探索。它们的工作方式就像一个黑匣子,有许多猜想和假设,”加州大学伯克利分校分子生物学教授Jacob Corn说。“现在,我们终于有能力

改良CRISPR工具-产前编辑致病基因

  科学家们首次在实验动物体内进行产前基因编辑试图阻止致命的代谢紊乱疾病,为出生前治疗人类先天性疾病提供了可能。费城儿童医院(CHOP)和宾夕法尼亚大学医学院的研究发表在今天出版的《Nature Medicine》上,证明了产前基因编辑的低毒性。  使用CRISPR-Cas9和碱基编辑器3(BE3)

Cancer子刊解答数十年癌症谜题:畸形染色体从何而来

  有些肿瘤拥有巨大的畸形染色体,人们将这些多余的染色体称为neochromosome。澳大利亚的研究者们发现,这种畸形染色体由基因组不同区域的序列拼凑而成,就像《弗兰肯斯坦》中的怪物一样。这项发表在Cancer Cell杂志上的研究解答了癌症领域数十年的谜题,揭示了肿瘤保证自身生存的一种策略,为癌

美国药物公司被指操纵“超级病菌”

  一个幽灵,正在困扰着欧美医学界。科研人员日前发出警告,曾经无所不能的抗生素将被一种来自南亚的“超级病菌”所终结。  英国卡迪夫大学、英国健康保护署(HPA)和印度马德拉斯大学的医学研究者日前在著名医学杂志《柳叶刀》上联合发表的一份报告显示,这种“超级病菌”几乎可以抵御除替加环素、

陶氏化工涉嫌操纵价格被罚12亿美元

  据外媒报道,根据一份法庭文件,15日堪萨斯州的州法官要求美国陶氏化工支付12亿美元的罚金,赔偿其在多种化工产品违规定价中带来的损失。   陶氏化工是美国主要的化工企业,生产许多化工原料产品。2005年,它和其他一些企业成为被告,主要是因为其操纵氨基甲酸酯化工原料的价格,这种原料用

新非线性设备让光线操纵变得简单

  据美国每日科学网站8月1日报道,美国科学家利用此前研发的“超材料”制造出一台新的非线性设备,使他们操纵光子变得像用电子设备操纵流动的电子一样随心所欲,光子元件取代通讯领域的电子元件又向前迈进一步。   当光穿过一个物体时,即使光可能会被反射、折射或强度有所减弱,但透出来的仍是同样