研究解析成年哺乳动物大脑皮层和海马内源NMDA受体的组装和结构

1月23日,中国科学院脑科学与智能技术卓越中心竺淑佳研究组和上海药物研究所李扬研究组合作,在《细胞》(Cell)上在线发表了题为《成年哺乳动物大脑皮层和海马内源NMDA受体的组装和结构》的研究论文。该团队通过提取大鼠大脑皮层和海马中的内源N-甲基-ᴅ-天冬氨酸(NMDA)受体,解析出3种主要亚型和比例,揭示了内源NMDA受体的原子分辨率三维结构,突破了NMDA受体的分子结构与功能研究局限于异源重组表达系统的瓶颈。这一成果为开发靶向NMDA受体治疗神经或精神类疾病的新型药物奠定了重要理论基础。学习和记忆是人类认知与感知世界的高级脑功能,而突触可塑性的改变被认为是学习和记忆的物质基础。NMDA受体存在于突触上的离子型谷氨酸门控通道家族,广泛参与神经发育、突触可塑性、学习记忆、认知及情绪等高级脑功能调控,被视为学习和记忆的关键“分子开关”。NMDA受体在负责学习和记忆相关高级认知功能的脑区发挥重要作用;受体通道对钙离子具备高通透性,根......阅读全文

T细胞受体信号通路研究背景

T细胞受体(TCR)在T细胞的功能和免疫突触的形成中起着关键作用。它在T细胞和抗原呈递细胞(APC)之间提供连接。TCRs激活促进了一系列信号级联,最终通过调节细胞因子的产生、细胞存活、增殖和分化来决定细胞的命运。T淋巴细胞的激活是免疫系统有效反应的关键事件。TCR激活受各种共刺激受体调节。CD28

细胞凋亡死亡受体通路相关介绍

死亡受体通路:由各种外界因素作为细胞凋亡的启动剂,然后通过不同的信号传递系统传递凋亡信号,引起细胞凋亡。死亡受体为一类跨膜蛋白,属肿瘤坏死因子受(TNFR)基因超家族。 其胞外部分都含有一富含半胱氨酸的区域 ,胞质区有一由同源氨基酸残基构成的结构,有蛋白水解功能,称“死亡区域”(death doma

Science:热点受体结构纤毫毕现

  研究人员得到了人体细胞膜蛋白前所未有的清晰图像。Leiden研究人员Ad IJzerman、Laura Heitman与其同事得到了一种医学靶点蛋白,G蛋白偶联受体家族A2A腺苷受体分辨率最高的晶体结构,研究发表在Science杂志上。   受体   A2A腺苷受体是人体的主要咖啡因受体

概述阿片受体的分布及类型

  阿片受体体内至少存在8种亚型。在中枢神经系统内至少存在4种亚型:μ、κ、δ、σ。吗啡类药物对不同型的阿片受体,亲和力和内在活性均不完全相同。阿片类药物可以使神经末梢释放乙酰胆碱、去甲肾上腺、多巴胺及P物质等神经递质减少。阿片类作用于受体后,引起膜电位超极化,使神经递质释放减少,从而阻断神经冲动的

雄激素受体(AR)的作用介绍

雄激素受体(AR),也称为NR3C4(核受体亚家族3,C组,成员4),是一种核受体,通过结合任何雄激素激活,包括睾酮和二氢睾酮在细胞质中,然后易位到细胞核。 雄激素受体与孕酮受体的关系最为密切,较高剂量的孕激素可以阻断雄激素受体。 雄激素受体的主要功能是作为调节基因表达的DNA结合转录因子; 然而,

植物激素受体的功能和应用

植物激素受体是指能与植物激素专一地结合的物质。这种物质能和相应的物质结合,识别激素信号,并将信号转化为一系列的生理生化反应,最终表现出不同的生物学效应。受体是激素初始作用发生的位点。所以,了解激素受体的性质及其在细胞内的存在位置,是研究激素作用机理的重要内容之一。激素受体是一种蛋白质,它们可能定位于

酪氨酸激酶的受体型

  受体酪氨酸激酶(receptor protein tyrosine kinases,RPTKs)的胞外区是结合配体结构域,配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子。胞内段是酪氨酸蛋白激酶的催化部位,并具有自磷酸化位点。  配体(如EGF)在胞外与受体结合并引起构象变化,导

嵌合抗原受体T细胞介绍

  过继性细胞免疫治疗是目前较为有效的恶性肿瘤的治疗方法之一。随着技术的日趋成熟, 已在多种实体瘤和血液肿瘤的临床治疗中取得较好疗效。  摘要: 过继性细胞免疫治疗(adoptive cellular immunotherapy, ACI)是目前较为有效的恶性肿瘤的治疗方法之一。随着技术的日趋成熟,

关于Toll样受体的结构介绍

  所有Toll样受体同源分子都是Ⅰ型跨膜蛋白,可分为胞膜外区,胞浆区和跨膜区三部分。  Toll样受体胞膜外区主要行使识别受体及与其他辅助受体(co-receptor)结合形成受体复合物的功能。Toll样受体的胞浆区与IL-1R家族成员胞浆区高度同源(IL-1R介导的信号传导系统和机制与果蝇类似)

核受体超家族的作用模式

细胞核内,核受体通过三种基本的作用模式调节基因转录:1、核受体与其伴侣转录因子的二聚体受到其配体亲脂性小分子激活后结合至靶DNA的靶序列从而调节转录;2、该二聚体受到配体激活后招募其他转录因子,通过其他转录因子与靶DNA的靶序列结合调节转录;3、该二聚体受到细胞表面受体或CDK蛋白激酶的激活而与靶D

胞内受体的种类和分化

胞内受体又可分为核内受体和胞浆受体,如雄激素、雌激素、孕激素及甲状腺素受体位于核内,而糖皮质激素受体位于胞浆中。类固醇激素与胞内受体结合后,可使受体的构象发生改变,暴露出DNA结合区。在胞浆中形成的类固醇激素-受体复合物以二聚体形式穿过核孔进入核内。在核内,激素-受体复合物作为转录因子与DNA特异基

G蛋白偶联受体的激活方法

胞内部分有G蛋白结合区。G蛋白α,β,γ三种亚单位组成的三聚体,静息状态时与GDP结合.当受体激活时GDP-αβγ复合物在Mg2+参与下,结合的GDP与胞质中GTP交换,GTP-α与βγ分离并激活效应器蛋白,同时配体与受体分离。α亚单位本身具有GTP酶活性,促使GTP水解为GDP,在与βγ亚单位形成

G蛋白偶联受体的激活方式

胞内部分有G蛋白结合区。G蛋白α,β,γ三种亚单位组成的三聚体,静息状态时与GDP结合.当受体激活时GDP-αβγ复合物在Mg2+参与下,结合的GDP与胞质中GTP交换,GTP-α与βγ分离并激活效应器蛋白,同时配体与受体分离。α亚单位本身具有GTP酶活性,促使GTP水解为GDP,在与βγ亚单位形成

Toll样受体的基本概念

Toll样受体(Toll-like receptors, TLR)是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,也是连接非特异性免疫和特异性免疫的桥梁。TLR是单个的跨膜非催化性蛋白质,可以识别来源于微生物的具有保守结构的分子。当微生物突破机体的物理屏障,如皮肤、粘膜等时,TLR可以识别它们并

死亡受体信号通路——Novus凋亡研究

死亡受体(Death Receptor)是肿瘤坏死因子受体(TNF, Tumor Necrosis Factor Receptor)基因超家族的成员,具有富含Cys的胞外结构域和胞内死亡结构域(DD, Death Domain)。死亡结构域具有诱导细胞凋亡的功能。目前已知的死亡受体有5种,其

G蛋白偶联受体的结构简介

  G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包

细胞因子及其受体的结构

   一、细胞因子的分子结构  不同细胞因子之间的结构上有很大的差异,一般,多数细胞因子为小分子多肽,分子量不超过60kD,多由100个左右的氨基酸组成。不同细胞因子之间无明显的氨基酸序列的同源性。  多数细胞因子以单体形式存在,少数因子如IL-5、IL-12、M-CSF、TGF-β等以双体形式存在

受体破坏酶的基本信息

受体破坏酶,破坏受体的酶。红血球或寄主细胞的表面有对应于病毒的受体,病毒以酶破坏受体,然而伯内特(F.M.Burnet)在霍乱菌的培养滤液中发现一种与病毒同样可破坏受体的酶,称此酶为RDE。其后明确它是神经氨酸苷酶。

胰岛素受体底物的定义

胰岛素受体底物(insulin receptor substrate,IRS),参与胰岛素及其他细胞因子信号转导的磷酸化蛋白。IRS在被胰岛素受体磷酸化以后,如同一块“磁铁”与那些具有SH2结构域的蛋白结合,根据所结合蛋白的具体结构产生不同的效应,如激活SH2蛋白的酶活性、改变蛋白质构型并同另外的蛋

受体介导的胞饮作用介绍

中文名称受体介导的胞饮英文名称receptor-mediated pinocytosis定  义通过受体介导将特殊的、比较小的溶质有选择性的连续地摄入细胞内的过程。是穿越细胞膜运送物质的方式之一。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

离子通道型受体功能介绍

离子通道型受体是一类自身为离子通道的受体,即配体门通道(ligand-gated channel)。主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细

关于神经递质受体的简介

  神经递质有十多种,它们各自有一种或一种以上的受体。就乙酰胆碱而言,在脊椎动物中至少有三种受体,其中烟碱胆碱能受体和蕈毒胆碱能受体研究得比较多。烟碱胆碱能受体分布于自主神经节、中枢、电鳗的电器官等的细胞膜中,当受体与烟碱结合而被激活后,离子通道很快开启,开启的持续时间短(毫秒级)。蕈毒胆碱能受体存

受体介导的胞吞作用过程

受体介导的内吞作用(RME),也称为网格蛋白介导的内吞作用,是一种细胞通过质膜向内萌芽(内陷)吸收代谢产物、激素、蛋白质和某些病菌的过程。这个过程形成含有被吸收物质的囊泡,并严格由细胞表面的受体介导。只有受体特异性物质才能通过这个过程进入细胞。过程:尽管受体及其配体可以通过几种机制(如Caveoli

G蛋白偶联受体的功能特点

G蛋白偶联受体参与众多生理过程。包括但不限于以下例子:感光:视紫红质是一大类可以感光的G蛋白偶联受体。它们可以将电磁辐射信号转化成细胞内的化学信号,引导这一过程的反应称为光致异构化(Photoisomerization)。具体细节为:由视蛋白(Opsin)和辅因子视黄醛共价连接所构成的视紫红质在光源

B细胞受体的信号通路描述

B细胞受体信号传导途径的示意图。B细胞受体的聚集会迅速激活SRC家族激酶,包括BLK、LYN和FYN以及SYK和BTK酪氨酸激酶。最终会形成由B细胞受体、上述酪氨酸激酶和接头蛋白组成的“信号小体(signalosome)”。 B细胞受体作为B细胞活动的关键调节位点,参与了多个信号通路。一般而言,膜结

T细胞表面受体主要种类介绍

⑴T细胞受体(TcellreceptorTCR) 为T细胞特异性识别抗原的受体。成熟T细胞功能性的TCR大多由α和β两条肽链所组成,称为TCRαβ,少部分为TCRγδ。与免疫球蛋白轻链和重链的结构相类似,TCR的α和β链各有一个靠近N端和可变区(V区)和靠近胞膜的恒定区(C区)。由于α和β链是由V-

概述受体介导的内吞作用

  受体介导的内吞作用(receptor mediated endocytosis) 是细胞依靠细胞表面的受体特异性地摄取细胞外蛋白或其他化合物的过程。细胞表面的受体具有高度特异性,与相应配体(被内吞的分子)结合形成复合物,继而此部分质膜凹陷形成有被小窝,小窝与质膜脱离形成有被小泡,将细胞外物质摄入

离子通道型受体的分布

离子通道型受体是一类自身为离子通道的受体,即配体门通道(ligand-gated channel)。主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。

代谢型受体的基本概念

中文名称代谢型受体英文名称metabotropic receptor定  义一类本身不是离子通道,但可以通过第二信使间接影响离子通道活性的受体。常特指代谢型神经递质受体,特别是代谢型谷氨酸受体。它们与G蛋白偶联,在被激活后通过各种不同的G蛋白调节酶和离子通道等效应分子而产生多种比较缓慢而持续的生理反

关于神经病理性疼痛的病因分析

  物理性的机械损伤、代谢或营养性神经改变、病毒感染、药物或放疗的神经毒性、缺血性神经损害、神经递质功能障碍等。  电生理基础  受伤神经部位的神经细胞膜Na离子通道和电压门控Ca离子通道的表达增高,并释放一些介质,使神经元的正常生理活动发生改变,导致对非伤害性或微小伤害的外周刺激反应加剧。大量自发