帕金森病在研基因疗法获美国FDA再生医学先进疗法认定

拜耳集团全资独立运营的基因治疗子公司AskBio Inc.(AskBio)2月19日宣布,用于治疗帕金森病的在研基因疗法AB-1005已获得美国食品药品监督管理局(FDA)授予的再生医学先进疗法(RMAT)认定。 AB-1005是旨在减缓帕金森病情进展并改善患者运动结果的试验性基因疗法。基于AskBio 提供的信息和数据,包括AB-1005的开放标签、非对照研究Ib期试验的临床证据等,FDA认定AB-1005符合再生医学先进疗法标准。 AskBio的36个月Ib期临床数据显示,AB-1005的给药耐受性良好,没有产品相关的严重不良反应事件。此外,与基线相比,中度帕金森队列在36 个月时在几个帕金森相关临床量表上显示出改善或稳定的趋势,包括运动障碍协会-统一帕金森病评定量表(MDS-UPDRS)和自我报告的帕金森运动日记,以及帕金森药物减少的趋势(左旋多巴等效日剂量[LEDD])。轻度帕金森队列中的大多数受试者表现出整体稳......阅读全文

帕金森病基因疗法获FDA再生医学先进疗法认定

  开发治疗神经疾病的生物医学公司Voyager Therapeutics宣布,美国FDA为VY-AADC基因疗法颁发了再生医学先进疗法(RMAT)认定,治疗难以进行医学管理,有运动波动的帕金森病患者。  帕金森病是一种慢性神经退行性疾病,影响了美国约100万人口,全球约700-1000万人口。据估

KB103治疗(DEB)获美国FDA再生医学先进疗法资格(RMAT)

  Krystal Biotech是一家专注于开发基因疗法治疗罕见皮肤病的生物技术公司。近日,该公司宣布,美国食品和药物管理局(FDA)已授予其先导候选基因疗法KB103(bercolagene telserpavec)治疗营养不良型大疱性表皮松解症(DEB)的再生医学先进疗法资格(RMAT)。  

帕金森病在研基因疗法获美国FDA再生医学先进疗法认定

  拜耳集团全资独立运营的基因治疗子公司AskBio Inc.(AskBio)2月19日宣布,用于治疗帕金森病的在研基因疗法AB-1005已获得美国食品药品监督管理局(FDA)授予的再生医学先进疗法(RMAT)认定。  AB-1005是旨在减缓帕金森病情进展并改善患者运动结果的试验性基因疗法。基于A

帕金森病细胞疗法候选药物获美国FDA再生医学先进疗法认定

5 月30 日,拜耳和临床阶段细胞治疗公司BlueRock Therapeutics LP宣布,用于治疗帕金森病的研究性细胞疗法bemdaneprocel已获得美国食品药品监督管理局(FDA)的再生医学先进疗法(RMAT)认定。“我们对bemdaneprocel I期临床试验的积极数据感到兴奋,并相

Rocket公司RLL102斩获美国FDA再生医学先进疗法(RMAT)资格

  Rocket制药公司是一家新兴的临床阶段生物技术公司,专注于开发一流的基因疗法治疗罕见的、毁灭性的疾病,该公司的多平台开发方法应用了成熟的慢病毒载体(LVV)和腺相关病毒载体(AAV)基因治疗平台。  近日,该公司宣布,美国食品和药物管理局(FDA)已授予其先导项目为RP-L102再生医学先进疗

再生医学大事记

  12月8日,Nature刊出了一期关于再生医学的特刊。其中包括7篇综述,分别介绍了再生医学的历史性事件、3D打印技术、干细胞与神经再生、I型糖尿病的细胞治疗、再生医学相关政策、跨学科协作等相关问题。感兴趣的朋友们可以到Nature网站阅读全文。   正如Nature特刊主编Herb Brody所

再生医学迎来新势力

   科学家曾认为,直到消亡,皮肤细胞依然是皮肤细胞。在过去10年,细胞的身份并不是一成不变的,它能够通过激活特异性的遗传程序得以重写。如今,再生医学领域面临一个问题:这种重写应当采取常规方法,即成熟细胞首先转化回干细胞,或者如果可能的话,采取一种更加直接的方法。  “终末分化”概述了这种旧观念——

赛诺菲/再生元Dupixent获FDA批准

  法国制药巨头赛诺菲(Sanofi)与合作伙伴再生元(Regeneron)近日宣布,美国FDA已批准Dupixent(dupilumab)注射液用于外用处方药无法充分控制病情或不适合这些药物治疗的中度至重度特应性皮炎(AD)成人患者。此次批准,使Dupixent成为首个也是唯一一个获批治疗中重度特

Cell发布再生医学重要发现

   根据瑞典卡罗琳斯卡学院(Karolinska Institutet)一项新研究的结果,人的一生都可以形成新的心肌细胞,但这主要发生在生命的最初十年。而其他的细胞类型则以更快地速度被更替。这项发表在《细胞》(Cell)杂志上的研究证实了,人的一生都在再生心肌,由此支持了有可能刺激失去的心脏组织重

Cell发布再生医学重要发现

  根据瑞典卡罗琳斯卡学院(Karolinska Institutet)一项新研究的结果,人的一生都可以形成新的心肌细胞,但这主要发生在生命的最初十年。而其他的细胞类型则以更快地速度被更替。这项发表在《细胞》(Cell)杂志上的研究证实了,人的一生都在再生心肌,由此支持了有可能刺激失去的心脏组织重建

Nature发布再生医学重要发现

   由Jackson实验室的Frank McKeon博士和Wa Xian博士领导的一个研究小组,报告称发现了某类肺干细胞在疾病损伤后的肺脏再生中发挥重要作用。  这项发表在11月12日《自然》(Nature)杂志上的研究工作,阐明了一个肺脏再生新兴概念的内部运作机制,并指出了利用这些肺干细胞的一些

Science发布再生医学重要发现

  内皮细胞并不仅仅只会对外源性刺激做出被动响应,它们自身还以一种非常积极的方式控制了器官功能。现在来自德国癌症研究中心和海德堡大学的科学家们发现,在遭受损伤或部分手术切除之后内皮细胞可通过一种复杂的生长调控机制来控制肝脏再生。   密集的动脉、毛细血管和静脉网络使得身体内的每个细胞距离最近的血管

PNAS发表再生医学新突破

  来自麻省总医院(MGH)的研究人员利用人类诱导多能干细胞(iPSCs)衍生的血管前体细胞,在动物模型中生成了功能性的血管,这些血管维持了长达9个月。在发表于《美国科学院院刊》(PNAS)杂志上的研究报告中,研究人员描述了利用来自健康成人以及1型糖尿病个体的iPSCs,在小鼠大脑外表面或皮肤下生成

Science发表再生医学重要发现

  生物通报道:斑马鱼拥有惊人的再生能力,它们的脊髓在切断之后可以完全愈合。杜克大学的研究人员十一月四日在Science发表文章,揭示了斑马鱼修复脊髓的一个关键蛋白。这一发现为人类组织修复带来了新的启示。  斑马鱼再生脊髓的时候会形成一种“桥”。支持细胞伸出长长的突起,跨越数十倍于自身长度的距离,与

Cell发布再生医学重要发现

  在以往的科学研究中来自德克萨斯大学西南医学中心的研究人员发现,新生动物的心脏具有完全的自愈能力,而成体心脏则丧失了这种能力。现在,同一研究小组揭示了在成年期心脏丧失其惊人再生能力的原因,答案很简单——氧气。   是的,就是氧气。众所周知,全身循环富含氧的血液是心脏的一个重要功能。但同时氧也是一

PNAS开辟再生医学新范式

  力学生物学领域的研究人员,通过揭示“身体的物理力和力学如何影响发育、生理健康以及疾病预防和治疗”,正在加深我们对于健康的理解。哈佛大学Wyss生物启发工程研究所的工程师和生物医学科学家团结协作,有助于将这一令人兴奋的研究领域推向实际应用。现在,Wyss研究所和哈佛大学工程与应用科学学院的一个研究

Nature发布再生医学重要发现

  由Jackson实验室的Frank McKeon博士和Wa Xian博士领导的一个研究小组,报告称发现了某类肺干细胞在疾病损伤后的肺脏再生中发挥重要作用。  这项发表在11月12日《自然》(Nature)杂志上的研究工作,阐明了一个肺脏再生新兴概念的内部运作机制,并指出了利用这些肺干细胞的一些潜

PNAS:再生医学重大进展

  多国科学家联手取得了再生医学领域的重要进展,他们首次描述了机体防止心脏和颅面肌出生缺陷的遗传学调控,文章于十月二十九日提前发表在PNAS杂志的网站上。这类疾病中有的相当普遍,例如平均一百个人中就有一个患有先天性心脏缺陷。这项基础研究为治疗这类疾病提供了路线图,使人们有望利用源自患者自身的干细胞来

2018年再生医学领域进展

  利用生物学及工程学的方法创造丢失或功能损害的组织和器官,使其具备正常组织和器官的结构和功能一直是再生医学领域研究的内容。而对再生医学领域理想“原料”的干细胞的研究一直是近年来的研究重点,虽然2018年“心脏干细胞”相关研究被曝造假事件震惊了整个干细胞研究领域,但是科学家们依旧前赴后继的努力工作,

《Cell》发布再生医学重要发现

  来自英国伦敦大学国王学院的研究人员,第一次阐明了一群存在于心脏中的干细胞的自然再生能力。新研究证实,这些细胞负责修复和再生了心脏病发作损伤的心肌组织。   发表在8月15日《细胞》(Cell)杂志上的这项新研究,表明如果除去这些干细胞,心脏将无法在损伤后得到修复。如果能够用心脏修复来替代这些心

遗传发育所再生医学中心--以再生医学提高人类生活质量

  在中国科学院遗传与发育生物学研究所(以下简称遗传发育所),有一支科研团队组建了再生医学中心,他们在再生医学领域开展了近15年的研究。  据中心主任戴建武向介绍,早在2014年7月,团队参与的第一例子宫内膜再生临床研究婴儿在南京鼓楼医院出生。他解释了再生的意义:“组织器官缺损后的自我修复和再生就是

Nature医学:再生胰腺β细胞的新药

  在1型和2型糖尿病中,体内产生胰岛素的β细胞数量在减少,胰腺不得不拼命产生人体所需的胰岛素。因此,科学家一直在苦苦寻找各种方法,来产生新的β细胞,或寻找β细胞的替代,或刺激β细胞体内再生。  最近,美国西奈山伊坎医学院的研究人员,在JDRF(1型糖尿病研究基金组织)和国立卫生研究院的资助支持下,

Cell挑战120年再生医学教条

  人们普遍认为,出生后不久哺乳动物中的心肌细胞就停止了增殖,限制了损伤后心脏的自我修复能力。发表在5月8日《细胞》(Cell)杂志上的一项新研究表明,在青春期前小鼠中的心肌细胞经历了短暂的爆发性增殖,数量上增加了40%,使得心脏能够满足快速生长期机体的循环需求。这些研究结果表明,甲状腺激素治疗可以

Nature发布再生医学重大突破

  来自美国波士顿的研究人员找到了一种方法促进人类角膜组织再生以恢复视力:利用称作为ABCB5的分子作为很难找到的角膜缘干细胞的 标记物。这项研究工作是由马萨诸塞眼耳/ Schepens眼研究所、波士顿儿童医院、Brigham妇女医院和VA波士顿卫生保健系统合作完成,其为烧伤患者、化学损伤受害者以及

赛诺菲/再生元抗炎药Dupixent获美国FDA批准

  法国制药巨头赛诺菲(Sanofi)与合作伙伴再生元(Regeneron)近日宣布,美国食品和药物管理局(FDA)已批准抗炎药Dupixent(dupilumab)一个新的适应症:与其他药物联用,治疗病情控制不足的伴鼻息肉的慢性鼻-鼻窦炎(CRSwNP)成人患者。该适应症通过优先审查程序获批,Du

Nature发表再生医学重大发现

  来自英国伦敦大学国王学院的科学家们,第一次确定了皮肤中称之为成纤维细胞(fibroblasts)的两种细胞类型的独特特性:其中一种细胞类型是毛发生长的必要条件,另一种负责修复皮肤创面。这项研究有可能为开发出新疗法修复损伤皮肤,减少衰老对于皮肤功能的影响铺平了道路。这项研究发表在12月11日的《自

高效构建类囊胚助力再生医学发展

在生命科学的前沿领域,类囊胚是近年来科学家们探索的热点。3月10日,记者从昆明理工大学获悉,该校灵长类转化医学研究院近期成功利用老龄猴重编程干细胞,高效构建了猴类囊胚,并进一步结合微流控技术,首次实现了工程化制备类囊胚胶囊。这一成果不仅改进并提升了猴类囊胚制备的方法和效率,还为其在再生医学领域研究和

赛诺菲-/-再生元重磅药物-Sarilumab-获-FDA-批准上市

  虽然“头对头研究打败全球药王 Humira”,赛诺菲 / 再生元重磅类风湿关节炎药物 Sarilumab 上市之路并不平坦。  原本 PDUFA 审批期限在 2016 年 10 月 30 日的 Sarilumab 在 2016 年 10 月 29 日收到收到 FDA 完全回复信(CRL)。FDA

2013国际再生医学材料会议在武汉召开

  6月2日至6日,2013国际再生医学材料会议在武汉召开。湖北省科技厅副厅长张震龙,武汉市东湖国家新技术开发区党工委副书记、管委会常务副主任兼武汉市国家生物产业基地建设管理办公室主任但长春,华中科技大学党委副书记欧阳康教授,武汉市国家生物产业基地建设管理办公室总工程师冯立及国家自然科学基金委员会、

Nature头条:发布再生医学重大成果

   来自华盛顿大学的研究人员利用人类胚胎干细胞生成的心脏细胞成功修复了猴子受损的心肌。这一重要的研究成果发表在4月30日的《自然》(Nature)杂志上,并被选为Nature网站的新闻头条。   研究人员说,结果表明这种方法在人类中应该也是可行的。“在这项研究之前,还不知道是否有可能生成足够数量的