2013值得关注的技术:NOMeSeq

DNA甲基化和核小体的分布组装共同调控着基因表达的表观遗传因素,解析这两个关键的过程对于了解遗传机制,以及疾病致病机理具有重要意义。 精确追踪这两个过程的传统方法主要依赖于对基因组中DNA甲基化,核小体占位(nucleosome occupancy),以及核小体定位过程的分步成像。但是这些技术过程都十分的费时费力。 由Active Motif公司开发的一种新技术:NOMe-Seq (Nucleosome Occupancy and Methylome Sequencing)能令科学家们“在同一个DNA分子中观察到DNA甲基化和核小体定位”,这将有助于表观遗传学研究。 在NOMe-Seq分析过程中,首先需要人工甲基化固定染色体的GpC残基(未经核小体包装),然后将交联倒转,释放核小体和任何结合的蛋白,如转录因子,并且令这个DNA进行亚硫酸盐转化,将未甲基化的胞嘧啶转化为尿嘧啶。此时再进行DNA测序,解......阅读全文

DNA甲基化参与调控大豆等表观遗传研究新进展

  大豆胞囊线虫(Soybean cyst nematode, SCN; Heteroderaglycines)病是引起大豆减产的病害之一,研究大豆-线虫互作机制对提出新的病害防控策略、培育抗胞囊线虫病的大豆新品种具有重要意义。DNA甲基化(DNA methlation)是一种表观遗传标记,在植物生

表观遗传之DNA甲基化(一)

俗话说,龙生龙,凤生凤,老鼠的儿子会打洞。 这句话什么意思呢?想必很多人有不同的看法~~ 从传统的社会认知角度看,就是“出生决定论”,一个人的出生是什么样的,以后就会有什么样的作为和成就,家庭决定着个人的前途和发展方向。龙凤阶层的人自出生以来便是龙凤,若是草根阶层,也很难上升到龙凤圈层,即使有这样的

表观遗传之DNA甲基化(二)

二 DNA甲基化 DNA甲基化:DNA甲基化是通过DNA甲基转移酶在胞嘧啶环的第5个碳原子上共价加成甲基而产生的,从而产生5-甲基胞嘧啶(5-mC),在体细胞中,几乎仅在二核苷酸CpG的对称甲基化配对中发现了5-mC,而在胚胎干(ES)细胞中,在非CpG中也观察到了大量的5-mC。5-mC作为表型和

表观遗传学关于DNA甲基化

表观遗传学是研究表观遗传变异的遗传学分支学科从目前的研究来看,X 染色体剂量补偿、DNA 甲基化、组蛋白密码、基因组印记、表观基因组学和人类表观基因组计划等问题都是表观遗传学研究的内容。其中甲基化是基因组DNA 的一种主要表观遗传修饰形式,是调节基因组功能的重要手段。在脊椎动物中,CpG二核

《Cell》文章:特殊的表观遗传调控

  来自中科院生物物理所,美国哥伦比亚大学的研究人员发表了题为“Multisite Substrate Recognition in Asf1-Dependent Acetylation of Histone H3 K56 by Rtt109”的文章,报道了Rtt109-Asf1-H3-H4复合物的

甲基化芯片在表观遗传学中的应用

  表观遗传改变可以定义为基因的遗传性或获得性改变,但是这种改变和DNA序列改变无关。DNA甲基化是最为常见的表观遗传改变;启动子或第一外显子CpG岛中的甲基化改变将导致基因表达失活;组蛋白的化学修饰也可以作为表观遗传改变;组蛋白发生乙酰化改变的基因通常被开启。    CpG岛的异常甲基化是导致基

表观新修饰6mA甲基化助力IF飙升(一)

DNA甲基化修饰是表观遗传研究的热点之一,我们通常认为DNA甲基化就是胞嘧啶甲基化(5-methylcytosine, 5mC),却不知道随着测序技术的快速发展,科研者们已经在真核生物中(果蝇 、真菌、莱茵衣藻、秀丽隐杆线虫等)发现了一种新的DNA甲基化修饰—DNA-6mA甲基化,且DNA-

甲基化芯片在表观遗传学中的应用

表观遗传改变可以定义为基因的遗传性或获得性改变,但是这种改变和DNA序列改变无关。DNA甲基化是最为常见的表观遗传改变;启动子或第一外显子CpG岛中的甲基化改变将导致基因表达失活;组蛋白的化学修饰也可以作为表观遗传改变;组蛋白发生乙酰化改变的基因通常被开启。CpG岛的异常甲基化是导致基因沉默和过度表

表观遗传研究热点:RNA-甲基化(m6A)研究

随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和 DNA 甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布 Nature, Cell 和 Science 等期刊杂志。在分子生物学的中心法则中,遗传信息从 DNA、RNA 流向蛋白。基因组 DNA 和组蛋白上都存在可逆的表观遗

表观新修饰6mA甲基化助力IF飙升(二)

3、数据分析标准分析:(1)DNA甲基化富集峰的识别通过高通量测序和生物信息分析,识别甲基化富集的基因组区域,默认p

表观遗传研究热点:RNA-甲基化(m6A)研究

随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和 DNA 甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布 Nature, Cell 和 Science 等期刊杂志。在分子生物学的中心法则中,遗传信息从 DNA、RNA 流向蛋白。基因组 DNA 和组蛋白上都存

关于基因表观修饰的方式—甲基化检测的介绍

  DNA甲基化是最早发现的基因表观修饰方式之一,真核生物中的甲基化仅发生于胞嘧啶,即在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5’-端的胞嘧啶转变为5’-甲基胞嘧啶。DNA甲基化通常抑制基因表达,去甲基化则诱导了基因的重新活化和表达。这种DNA修饰方式在不改变基因序列前提下实现对基

Nucleic-Acids-Research:脂肪生成的表观调控机制

肥胖和2型糖尿病的全球发病率在过去的30年中显著增加,已严重危害人们的生命健康。脂肪组织被认为与该类疾病相关,因此操纵脂肪细胞的分化和成熟有望用于临床治疗。大量研究已阐明转录和表观遗传(DNA和组蛋白修饰)在脂肪发生过程中的重要作用,但是对于转录后调控如何影响脂肪生成,尚不清楚。 近日,华中农业大

Nucleic-Acids-Research:脂肪生成的表观调控机制

肥胖和2型糖尿病的全球发病率在过去的30年中显著增加,已严重危害人们的生命健康。脂肪组织被认为与该类疾病相关,因此操纵脂肪细胞的分化和成熟有望用于临床治疗。大量研究已阐明转录和表观遗传(DNA和组蛋白修饰)在脂肪发生过程中的重要作用,但是对于转录后调控如何影响脂肪生成,尚不清楚。近日,华中农业大学的

Nucleic-Acids-Research:脂肪生成的表观调控机制

  肥胖和2型糖尿病的全球发病率在过去的30年中显著增加,已严重危害人们的生命健康。脂肪组织被认为与该类疾病相关,因此操纵脂肪细胞的分化和成熟有望用于临床治疗。大量研究已阐明转录和表观遗传(DNA和组蛋白修饰)在脂肪发生过程中的重要作用,但是对于转录后调控如何影响脂肪生成,尚不清楚。   近日,华

精氨酸甲基化调控细胞凋亡研究

遗传与发育生物学研究所杨崇林实验室以秀丽线虫为模式,探索蛋白质精氨酸甲基化这一重要的蛋白质翻译后修饰方式在调控DNA损伤诱导的细胞凋亡方面的作用机制。 通过研究发现哺乳动物II型蛋白质精氨酸甲基转移酶PRMT5在线虫中的同源物,即线虫的PRMT-5,参与调控DNA损伤引起的细胞凋亡。在prmt-5基

甲基化测序捕捉三阴性乳腺癌表观遗传特性

  近日,一篇刊登在国际杂志Nature Communications上的研究报告中,来自澳大利亚悉尼加文医学研究所(Garvan Institute of Medical Research)的科学家们通过将乳腺癌患者机体的乳腺癌甲基化组同健康个体进行比较从而绘制出了一种新型的基因组图谱,其可以帮助

看表观新修饰6mA甲基化如何助力IF飙升!

  DNA甲基化修饰是表观遗传研究的热点之一,我们通常认为DNA甲基化就是胞嘧啶甲基化(5-methylcytosine, 5mC),却不知道随着测序技术的快速发展,科研者们已经在真核生物中(果蝇 、真菌、莱茵衣藻、秀丽隐杆线虫等)发现了一种新的DNA甲基化修饰—DNA-6mA甲基化,且DNA-6m

关于基因表观修饰的方式—甲基化检测的程序介绍

  1.甲基化特异性的PCR(Methylation-specific PCR,MSP)  用亚硫酸氢盐处理基因组DNA,所有未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变;随后设计针对甲基化和非甲基化序列的引物进行PCR。通过电泳检测MSP扩增产物,如果用针对处理后甲基化DNA链的引物能

科学家实现单细胞水平甲基化和去甲基化调控

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507595.shtm

干细胞多能性与表观遗传调控的综述

  7月23日,Nature Review Molecular Cell Biology杂志在线发表了中国科学院生物物理研究所刘光慧研究员同美国索尔科生物学研究所(The Salk institute for Biological Studies)研究人员合作的关于干细胞多能性与表观遗传调控

解析小麦多倍化的表观遗传调控分子机制

  近日,南京农业大学农学院教授宋庆鑫课题组在《基因组生物学》(Genome Biology)上发表了研究论文。该研究利用OCEAN-C技术绘制了不同倍性小麦的开放染色质互作图谱,并整合了染色质可及性、组蛋白修饰和转录组,深入解析了六倍体小麦多倍化过程中开放元件远距离互作调控基因表达的分子机制。  

表观遗传调控水稻重要农艺性状研究获进展

  转座子(transposon)是一段自身能够插入到基因组上的DNA片段,上世纪40年代,芭芭拉·麦克林托克(Barbara McClintock)首先在玉米中发现了转座子。从简单的细菌到复杂的人类,转座子广泛存在。转座子随机插入到重要基因中,会引发疾病、癌症和其他生理缺陷。DNA甲基化、组蛋

大豆进化与驯化表观遗传调控规律获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454973.shtm 近日,南京农业大学多倍体团队在《植物细胞》上发表研究论文。该研究整合三维基因组、染色质可及性、组蛋白修饰、DNA甲基化和转录组,深入解析了在大豆多倍化、二倍化与人工驯化过程中,三

Nature:表观遗传与基因调控的新发现

  最近在《Nature》杂志发表的一篇研究中,瑞士Friedrich Miescher生物医学研究所(FMI)的Dirk Schübeler和他的研究小组,描述了转录因子和DNA表观遗传修饰之间的相互作用,会对基因调控有何影响。科学家发现,转录因子可以通过DNA甲基化模式的改变而间接合作:通过去除

Arraystar-DNA甲基化芯片干细胞移植改善骨质疏松表观机制

   施松涛教授任职于宾夕法尼亚大学,长期从事口腔再生医学及其临床转化方面的研究工作。近期其研究团队利用Arraystar DNA甲基化芯片研究移植间充质干细胞(MSC)通过表观遗传调控Notch信号改善红斑狼疮患者的骨质疏松。这一重要研究发现发布在Cell Metabolism杂志(IF:17.5

多项表观遗传研究成果被质疑:甲基化的真实作用

  本周来自瑞士和美国的研究人员指出,目前一般认为DNA甲基化之间的差异会决定社会性昆虫是成为繁殖蚁(也就是蚁后),还是工蚁的这种观点并不可靠,他们认为DNA甲基化作用并未得到已有数据的充分支持。这一研究成果公布在Current Biology杂志上。  “这一发现表明,并没有证据证明甲基化会造成两

研究揭示水稻DELLA蛋白的表观调控新机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508456.shtm

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

长链非编码RNAs介导的表观遗传调控基础

  近日,中国科学院昆明动物研究所李家立、胡新天和郑永唐课题组与中国科学技术大学生命科学学院汪香婷课题组、武汉生命之美生物科技公司合作,揭示了长链非编码RNAs在灵长类大脑发育和老化过程中表达动态变化和作用。该研究成果以Annotation and cluster analysis of spati