加拿大发现线粒体早期抵御疾病“质控”机制

加拿大科学家发现,与遗传性帕金森氏症相关的两个基因参与了线粒体早期阶段的质量控制。该保护机制可将氧化应激造成的受损蛋白从线粒体中移除。研究成果发表在近期出版的《欧洲分子生物学学会杂志》上。 蒙特利尔神经学研究所及附属医院麦吉尔帕金森项目的爱德华·冯表示,在细胞器内发生过度氧化损伤条件下,PINK1和parkin基因可选择性地将线粒体的功能失调组件导入溶酶体。研究揭示了这样一种质量控制机制,即囊泡在线粒体中出芽,并继续到溶酶体中退化。这种方法与之前已知的整个受损的线粒体的退化路径有所不同。这是按照一个以小时计而不是以天计的时间表作出的提前反应。 这种退化机制旨在维持线粒体在整个细胞寿命期的完整性和功能性,被认为是包括帕金森氏症在内的某些神经变性疾病的发展基础。线粒体这个为细胞提供能量的“发电厂”发生故障就会导致帕金森氏症。线粒体想要生存和发挥功能,就必须让氧化受损的蛋白降解。 在该项研究中,研究人员使用免疫荧......阅读全文

关于细胞器—线粒体的结构介绍

  线粒体具有双层膜结构,外膜是平滑而连续的界膜;内膜反复延伸折入内部空间,形成嵴。内外膜不相通,形成膜腔。光镜下,线粒体成颗粒状或短杆状,横径0.2um~8um,细菌大小。线粒体是细胞内产生ATP的重要部位,是细胞内动力工厂或能量转换器。线粒体具有半自主性,腔内有成环状的DNA分子、少量RNA和7

简述细胞损伤时线粒体结构的改变

  线粒体嵴是能量代谢的明显指征,但嵴的增多未必均伴有呼吸链酶的增加.嵴的膜和酶平行增多反映细胞的功能负荷加重,为一种适应状态的表现;反之,如嵴的膜和酶的增多不相平行,则是胞浆适应功能障碍的表现,此时细胞功能并不升高.  在急性细胞损伤时(大多为中毒或缺氧),线粒体的嵴被破坏;慢性亚致死性细胞损伤或

癌细胞形成肿瘤离不开线粒体

  线粒体是细胞中提供能量的细胞器,被称作细胞的“能量工厂”。但科学家现在发现了线粒体在肿瘤发展过程中扮演的一种全新角色,被剥夺线粒体的癌细胞无法形成肿瘤。图片来源于网络  发表在新一期美国《细胞—代谢》杂志上的研究显示,癌细胞需要线粒体才能存活并增殖。这项研究增进了对线粒体在肿瘤形成过程中所发挥作

细胞超微结构线粒体的相关概述

  线粒体(mitochondrion)是细胞内主要的能量形成所在,故不论在生理上或病理上都具有十分重要的意义.  线粒体为线状,长杆状,卵圆形或圆形小体,外被双层界膜.外界膜平滑,内界膜则折成长短不等的嵴并附有基粒.内外界膜之间为线粒体的外室,与嵴内隙相连,内界膜内侧为内室(基质室).  在合成甾

关于细胞凋亡的线粒体作用的介绍

  ⑴若将纯化的正常的线粒体与纯化的细胞核在一起保温,并不导致细胞核的变化。但若将诱导生成PT孔道的线粒体与纯化的细胞核一同保温,细胞核即开始凋亡变化。  ⑵细胞死亡调节蛋白不论是抑制死亡的bcl-2家族还是促进细胞死亡的Bax家族均以线粒体作为靶细胞器。bcl-2蛋白的C端的疏水肽段能插入线粒体外

癌细胞形成肿瘤离不开线粒体

  线粒体是细胞中提供能量的细胞器,被称作细胞的“能量工厂”。但科学家现在发现了线粒体在肿瘤发展过程中扮演的一种全新角色,被剥夺线粒体的癌细胞无法形成肿瘤。  发表在新一期美国《细胞—代谢》杂志上的研究显示,癌细胞需要线粒体才能存活并增殖。这项研究增进了对线粒体在肿瘤形成过程中所发挥作用的认识,为癌

线粒体基质的线粒体结构

  线粒体基质  线粒体基质是线粒体中由线粒体内膜包裹的内部空间,其中含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶等众多蛋白质,所以较细胞质基质黏稠。苹果酸脱氢酶是线粒体基质的标志酶。线粒体基质中一般还含有线粒体自身的DNA(即线粒体DNA)、RNA和核糖体(即线粒体核糖体)。  线粒体

线粒体分裂通过调控相变促进巨噬细胞吞食癌细胞

  免疫治疗为肿瘤治疗带来革命。目前,主流的免疫治疗是促进T细胞对癌细胞的细胞毒性作用,诱导免疫细胞吞噬癌细胞成为下一代免疫治疗的重要思路。许多治疗性单克隆抗体能诱导巨噬细胞吞食癌细胞(1),其作用机制主要是两种:1. Fcγ受体介导的吞噬,称为抗体依赖细胞吞噬效应(ADCP),典型是临床常用的赫赛

线粒体分裂通过调控相变促进巨噬细胞吞食癌细胞

  阐明巨噬细胞如何有效地吞食癌细胞对设计下一代肿瘤免疫治疗有重要意义。近日,中山大学孙逸仙纪念医院苏士成教授团队发现线粒体分裂通过改变吞噬机器两个重要成分WIP和WASP相变,从而促进巨噬细胞吞食癌细胞。靶向调控肿瘤微环境谷氨酰胺竞争的酶,能通过促进肿瘤吞噬从而提高多个单抗的疗效。相关研究在线发表

如何证明线粒体与凋亡细胞息息相关

线粒体在细胞凋亡过程中最重要的一点在于它可释放能够激活Caspases的蛋白。在无细胞的体系中,自发的、可以由Bcl-2抑制的染色质聚集和DNA片段化依赖于线粒体的存在,进而发现实际上是依赖于Cyto-c从线粒体中的释放。从线粒体释放的Cyto-c与Apaf-1、Procaspase 9结合在一起形

Mol-Cell:细胞如何保护自身免于线粒体缺陷?

  细胞需要线粒体来利用食物中储存的能量,线粒体维持功能所需要的大部分蛋白质都是在细胞核中被编码的,并且当这些蛋白质在胞质中被合成后运输到线粒体中,而特殊的信号序列能促进蛋白质进入到线粒体中,一旦蛋白质抵达线粒体,信号序列就会被移除,目前研究人员并不清楚移除信号序列的重要性,同时他们也不清楚为何该环

如果细胞的线粒体受损会怎么样

线粒体受损最大的影响,就是人类的衰老,帕金森氏病、阿尔茨海黑氏症等疾病,都是由于线粒体的受损而导致的,综合来说,关于线粒体会导致人类的衰老,有三种说法:第一种说法是,线粒体在利用氧制造能量进行细胞分化的过程中,产生了大量自由基,破坏细胞结构,导致细胞的损伤所致,这是由Miquel J和Fleming

细胞核与线粒体的分级分离

实验概要通过细胞匀浆和离心的方法分级分离细胞的组分,以了解其原理及过程。实验原理细胞内不同结构的比重和大小都不相同,在同一离心场内的沉降速度也不相同,根据这一原理,常用不同转速的离心法,将细胞内各种组分分级分离出来。分离细胞器最常用的方法是将组织制成匀浆,在均匀的悬浮介质中用差速离心法进行分离,其过

如果细胞的线粒体受损会怎么样

线粒体受损最大的影响,就是人类的衰老,帕金森氏病、阿尔茨海黑氏症等疾病,都是由于线粒体的受损而导致的,综合来说,关于线粒体会导致人类的衰老,有三种说法:第一种说法是,线粒体在利用氧制造能量进行细胞分化的过程中,产生了大量自由基,破坏细胞结构,导致细胞的损伤所致,这是由Miquel J和Fleming

如果细胞的线粒体受损会怎么样

线粒体受损最大的影响,就是人类的衰老,帕金森氏病、阿尔茨海黑氏症等疾病,都是由于线粒体的受损而导致的,综合来说,关于线粒体会导致人类的衰老,有三种说法:第一种说法是,线粒体在利用氧制造能量进行细胞分化的过程中,产生了大量自由基,破坏细胞结构,导致细胞的损伤所致,这是由Miquel J和Fleming

关于线粒体肌病的细胞移植治疗介绍

  成肌细胞移植是近年来兴起的一种治疗方法。细胞生物学研究表明成肌细胞相互融合成肌小管而发育成成熟的肌纤维。如将患者肌细胞与正常肌细胞在体外融合,然后输入到患者体内,一般选用多点肌肉注射的方式,患者体内就可能有更多的野生mtDNA。或许将来能应用于临床治疗。

细胞核与线粒体的分级分离

一、所需试剂及设备小白鼠、冰块、玻璃匀浆器、普通离心机、台式高速离心机、普通天平、光学显微镜、载玻片、盖玻片、刻度离心管、高速离心管、滴管、10ml量筒、25m1烧杯、玻璃漏斗、解剖剪、镊子、吸水纸、纱布、蜡盘、平皿、牙签。0.25moL/L蔗糖一0.003mol/L CaCl2溶液、1%甲苯胺

细胞移植治疗线粒体脑肌病的介绍

  成肌细胞移植是近年来兴起的一种治疗方法。细胞生物学研究表明成肌细胞相互融合成肌小管而发育成成熟的肌纤维。如将患者肌细胞与正常肌细胞在体外融合,然后输入到患者体内,一般选用多点肌肉注射的方式,患者体内就可能有更多的野生mtDNA。或许将来能应用于临床治疗。

细胞线粒体内部精细结构研究(二)

2、改良了传统SIM方法产生衍射光栅的方法2D-SIM成像需要通过产生两束互相干涉的光来形成三种不同偏振方向,且光强在空间上呈正弦变化的结构光。在传统的SIM成像方法中,这一过程除了要依靠液晶硅基的空间光调制器(LCOS-SLM)对光相位进行调制之外,还需要一种特殊的光学器件来改变光的偏振方向——旋

细胞核与线粒体的分级分离

  一、原理    细胞内不同结构的比重和大小都不相同,在同一离心场内的沉降速度也不相同,根据这一原理,常用不同转速的离心法,将细胞内各种组分分级分离出来。    分离细胞器最常用的方法是将组织制成匀浆,在均匀的悬浮介质中用差速离心法进行分离,其过程包括组织细胞匀浆、分级分离和分析三步,这种方法已成

线粒体在细胞凋亡中有哪些关键作用

线粒体属于内源性caspase-induced凋亡途径中的中心细胞器。其中第一个线粒体源的凋亡促进因子cytc的释放将会在细胞质中招募apaf1和caspase9,形成凋亡复合体,凋亡复合体中caspase9相互活化,最终活化多种效应caspase(3等)。第二个发现的线粒体凋亡因子smac,在凋亡

细胞核与线粒体的分级分离

实验概要掌握细胞核与线粒体的分级分离的实验技术。实验原理细胞内不同结构的比重和大小都不相同,在同一离心场内的沉降速度也不相同,根据这一原理,常用不同转速的离心法,将细胞内各种组分分级分离出来。分离细胞器最常用的方法是将组织制成匀浆,在均匀的悬浮介质中用差速离心法进行分离,其过程包括组织细胞匀浆、分级

细胞化学基础线粒体DNA主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

细胞核与线粒体的分级分离

一、原理细胞内不同结构的比重和大小都不相同,在同一离心场内的沉降速度也不相同,根据这一原理,常用不同转速的离心法,将细胞内各种组分分级分离出来。分离细胞器最常用的方法是将组织制成匀浆,在均匀的悬浮介质中用差速离心法进行分离,其过程包括组织细胞匀浆、分级分离和分析三步,这种方法已成为研究亚细胞成分的化

细胞凋亡检测实验——线粒体膜势能的检测

实验方法原理线粒体在细胞凋亡的过程中起着枢纽作用,多种细胞凋亡刺激因子均可诱导不同的细胞发生凋亡,而线粒体跨膜电位的下降,被认为是细胞凋亡级联反应过程中最早发生的事件,它发生在细胞核凋亡特征(染色质浓缩、DNA 断裂)出现之前,一旦线粒体DYmt 崩溃,则细胞凋亡不可逆转。 线粒体跨膜电位的存在,使

细胞核与线粒体的分级分离

一、原理   细胞内不同结构的比重和大小都不相同,在同一离心场内的沉降速度也不相同,根据这一原理,常用不同转速的离心法,将细胞内各种组分分级分离出来。    分离细胞器最常用的方法是将组织制成匀浆,在均匀的悬浮介质中用差速离心法进行分离,其过程包括组织细胞匀浆、分级分离和分析三步,这种方法已成为研究

细胞线粒体内部精细结构研究(一)

生物圈的小伙伴肯定还记得前段时间的一则刷屏新闻: 北京大学陈良怡教授团队和华中科技大学谭山教授团队合作,成功发明了一种新型结构光照明超分辨显微成像技术——海森结构光照明显微镜。研究成果于高水平学术期刊Nature Biotechnology(IF=41.67)进行了发表。 之所以轰动,是因为该技术拥

线粒体和细胞核的制备与观察

实验概要本实验介绍了线粒体和细胞核制备的基本原理及操作。对分离得到的细胞核及线粒体进行了活性鉴定,有助于掌握用差速离心技术分离制备动物细胞核及线粒体的方法。实验原理利用细胞核与线粒体在一定介质中的沉降速度的差异,可采取分级差速离心的方法,将细胞核与线粒体逐级分离出来(差速离心技术)。线粒体是真核细胞

活体细胞线粒体肿胀流式细胞仪测定法

主要用途       我 公司血液硫化氢含量比色法定量检测试剂是一种旨在通过碱性苦味酸与肌酐反应,产生蓝色产物所呈现的吸光峰值的变化,即采用比色法来测定样品中硫化氢含量的而经典的技术方法。该技术经过精心改良亚甲基蓝方法、成功实验证明的。其适用于各种人体、动物血液(包括血清或血浆)样品等硫化氢水平检测

Cell子刊颠覆发现:癌细胞可从健康细胞获取线粒体DNA

左图:暗场图像凸显了被荧光染色的线粒体的传递。右图:明场下,有足够的光线可以看到连接的纳米级管道。  新西兰马拉格汉研究中心的迈克•贝里奇教授(Mike Berridge)领导的小组是世界上第一个发现线粒体DNA能在动物肿瘤细胞间移动的团队。他们的文章上周发表在《细胞》杂志的子刊《细胞-代谢》(Ce