P350萃取色谱分离无火焰原子吸收光谱法测定地球化学样品中的铟
摘要: 应用甲基膦酸二甲庚脂( P350 )萃取分离干扰元素,无火焰原子吸收光谱法测定地球化学样品中的铟。方法检出限为0. 022 ×10- 6 ,对铟含量为0. 064μg/g和4. 1μg/g的样品进行11次测定, RSD分别为12. 2%和6. 4%。经过国家一级标准物质分析验证,结果与标准值符合。点击这里进入下载页面:进入下载页面......阅读全文
原子吸收火焰法与无火焰法的区别
原子吸收分析中主要有三种原子化法:火焰法、石墨炉法、冷原子法。火焰光度法应该是原子发射里面的概念。
固相微萃取气相色谱法测定水中的甲基膦酸
摘要: 报道了应用固相微萃取- 气相色谱法测定水中甲基磷酸的方法, 研究了不同固相微萃取纤维、萃取温度和时间、解吸时间、pH 值等萃取条件和衍生化温度和时间、衍生化程序等衍生条件对测定效果的影响;结果表明该法简便、快速、有效, 其检出限为0. 03mg/ L。 固相微萃取( SPME) 技术是
萃取石墨炉原子吸收法测定铟、铊的操作步骤
操作步骤(1)水样消解①准确移取适量水样(铟、铊含量应小于0.4 μg)于烧杯中(视水样的量可选用100~250 ml的烧杯),加入三氯化铁溶液0.5 ml,浓盐酸5 ml,在电热板上蒸发至约剩5 ml时,加入15 ml(1+1)硫酸微热溶解可能产生的残渣。转入50 ml具塞比色管中,冷却至室温,加
什么是无火焰原子吸收光度法
无火焰原子吸收光度法也叫电热原子吸收光度法.它是用通电的办法加热石墨管或高温金属舟来使石墨管或金属舟体产生很高的温度,从而使石墨管(或金属舟)内的试样在极短的时间内热解、气化,形成基态原子蒸气.常用的有石墨炉原子化系统和金属原子化系统.
什么是无火焰原子吸收光度法?
无火焰原子吸收光度法也叫电热原子吸收光度法。它是用通电的办法加热石墨管或高温金属舟来使石墨管或金属舟体产生很高的温度,从而使石墨管(或金属舟)内的试样在极短的时间内热解、气化,形成基态原子蒸气。常用的有石墨炉原子化系统和金属原子化系统。
萃取石墨炉原子吸收法测定铟、铊的注意事项
精密度和准确度用本方法测定水样中0.043~0.12 mg/L的铟,相对标准偏差为5.56%~10.4%;水样中0.21~0.94 mg/L铊的相对标准偏差为3.85%~10.79%,加标回收率为90%~105%。注意事项①各种型号的仪器,测定条件不尽相同,因此应根据仪器说明书选择合适条件。②普通原
萃取石墨炉原子吸收法测定铟、铊的仪器和试剂选择
仪器①原子吸收分光光度计,帯石墨炉及背景校正器;②涂Mo或涂La石墨管。仪器参数如表1 所示。表1 铟、铊的测定条件元素铟铊波长(nm)325.6276.8通带宽度(nm)0.40.4干燥(℃/s)80~120/3080~120/20灰化(℃/s)700/30500/20原子化(℃/s)2600
测定水中草甘膦和氨甲基膦酸
方案优势 《生活饮用水标准》检验方法中草甘膦的检测采用柱后衍生高效液相色谱荧光检测法,其前处理较繁琐,水样需浓缩富集。而选择直接进样高效液相色谱柱后衍生法测定,实验结果表明该法简便快速可靠有很好的实用性。 采用标准 《生活饮
原子吸收光谱仪的无火焰原子化器
常用无火焰原子化器包括石墨炉原子化器和氢化物原子化器。 石墨炉原子化法是利用低压、大电流来使石墨管升温,最高温度可升至3000℃,这一升温过程可使石墨管中的试样完成干燥、灰化、原子化和净化等测定。 干燥:去除溶剂,防止样品溅射。 灰化:使基体和有机物尽量挥发出去。 原子化:待测化合物分解
地表水相关检测项目一览
检测项目检测内容地表水环境质量标准基本项目标水温(℃)、pH值(无量纲)、溶解氧、高锰酸盐指数、化学需氧量(COD)、五日生化需氧量(BOD5)、氨氮(NH3-N)、总磷(以P计)、总氮(湖、库,以N计)、氟化物(以F-计)、硒、砷、汞、铬(六价)、氰化物、挥发酚、石油类阴离子表面活性剂、硫化物、粪
固相微萃取法(SPME)测定海水中的甲基膦酸
摘要 成功地将固相微萃取法应用于测定海水中的甲基膦酸,解决了蒸干衍生法难以检测海水中的甲基膦酸的难题,研究了方法的各种影响因素,对萃取时间、解吸时间、样品的p H 值和萃取温度等条件进行了优化,所建立方化学毒剂是一种大规模杀伤性武器,在战争史中曾造成重大人员伤亡。 在和平时期化学毒剂又成为恐怖分子的
火焰原子吸收法
1、浓度太高可能会超出其线性范围2、浓度太高会导致管路有记忆效应,存在残留。 分析测试百科网,分析行业的百度知道,祝你实验顺利,科研有成。原子吸收的灵敏度高,线性范围小,对样品浓度有比较严格的限制范围。需要稀释后进样从吸光度来说,最好最大吸光度不要超过0.25。也就是说,不管什么元素,最高浓度点的A
火焰原子吸收仪
产品组成原子吸收光谱仪由光源、原子化器、单色器和检测器等四部分组成,如图2-1所示:图2-1 火焰原子吸收光谱仪结构2.1光源光源是原子吸收光谱仪的重要组成部分,它的性能指标直接影响分析的检出限、精密度及稳定性等性能。光源的作用是发射被测元素的特征共振辐射。对光源的基本要求:发射的共振辐射的半宽度要
如何界定无火焰型原子吸收光谱测定条件
在无火焰原子吸收测定中仪器参数的选择,包括波长、光谱通带和灯电流的选样等准绳和火焰原子吸收法相同。 一、原子化器品种的选择 普通中低温原子化元素选择普通石墨管原子化器,关于容易生成难熔碳化物的金素,如Ti、Zr、Hf、V、Nb、Ta、Mo、W、Si、B、Y、稀土、U、Th等,可选用热
原子吸收AAS元素分析方法铟In
1. 基本特性: 原子量 114.82 电离电位 5.8 (ev) 离解能 1.1 (ev)2. 样品处理: HNO3+HF; HCL+H2SO4; HCL+H2SO4+HNO3;3. 分析条件 分析线: 303.9 nm 狭缝: 0.4 nm (火焰) 2.
原子吸收AAS元素分析方法铟In
原子吸收AAS--元素分析方法--铟In1. 基本特性: 原子量 114.82 电离电位 5.8 (ev) 离解能 1.1 (ev)2. 样品处理: HNO3+HF; HCL+H2SO4; HCL+H2SO4+HNO3;3. 分析条件 分析线: 303.9 nm 狭缝: 0.
《GB/T5750-生活饮用水标准检验方法》征求意见稿重磅发布
新年伊始,水行业就迎来了重磅消息:全国标准信息公共服务平台上发布了新《GB/T 5750 生活饮用水标准检验方法》(征求意见稿),而与《生活饮用水卫生标准》配套的两项重标准《 GB/T17218 生活饮用水化学处理剂卫生安全性评价》和《GB/T 17219 生活饮用水输配水设备及防护材料卫生安全
烷基磷(膦)酸的萃取形式
烷基磷(膦)酸的萃取过程比较复杂,随萃取条件不同存在四种形式:(1)当水相金属离子浓度低、有机相负载很小时,二聚体烷基磷酸分子中仅一个氢离子参加反应;(2)若水相金属离子浓度较高,则烷基磷酸以单体形式与金属离子发生交换;(3)当水相中某种阴离子对金属离子具有很强的配合能力时,萃取剂阴离子可与这种阴离
气相色谱火焰原子吸收光谱联用
气相色谱-火焰原子吸收光谱的联用(GC-FAAS)是由气相色谱分离后的组分通过有加热装置的传输线直接导入火焰原子吸收光谱的火焰原子化器。图11-5-1是庞秀言等人用来测定人体体液中二甲基汞(He2Hg)和氯化甲基汞(MeHgCl)的气相色谱-火焰原子吸收光谱仪联用装置的示意图。由于测定的是烷基汞,故
原子吸收光谱仪——无火焰石墨炉分析技术
经过一代科学技术工作者的努力,目前,我国已经成功地掌握了原子吸收光谱仪的设计、生产技术。中国 AAS 的发展历程自有独特之处。在光学设计上要求高效率,因之大部分仪器为透射系统,结构简单,光能量强,同时元素灯多采用脉冲供电,测量信噪比良好,在火焰分析方面,与国外同类型仪器相比,国产仪器的典型元素检出
原子吸收中火焰特性
火焰特性:ⅰ.空气—乙炔火焰,这是用途最广的一种火焰.a.贫燃性空气—乙炔火焰,其燃助比小于1:6,火焰燃烧高度较低,燃烧充分,温度较高,但范围小,适用于不易氧化的元素。b.富燃性空气—乙炔火焰,其燃助比大于1:3,火焰燃烧高度较高,温度较贫然性火焰低,噪声较大,由于燃烧不完全,火焰成强还原性气氛,
原子吸收光谱仪——无火焰石墨炉分析技术(一)
经过一代科学技术工作者的努力,目前,我国已经成功地掌握了原子吸收光谱仪的设计、生产技术。中国 AAS 的发展历程自有独特之处。在光学设计上要求高效率,因之大部分仪器为透射系统,结构简单,光能量强,同时元素灯多采用脉冲供电,测量信噪比良好,在火焰分析方面,与国外同类型仪器相比,国产仪器的典型元
原子吸收光谱仪——无火焰石墨炉分析技术(三)
二、 光学系统 表 2 所示为 AAS 常规分析所涉及的 66 种元素的分析波长表,可见 73% 的元素其分析波长皆处于光谱的紫外光部分(波长低于 400nm 的光称为紫外光)。在光学仪器中各种光学元件对紫外光的传输效率都会降低。实验表明铝膜反射镜在入射光波长λ =500nm 时反射效率
原子吸收光谱仪——无火焰石墨炉分析技术(二)
原子吸收分析方法及仪器的奠基者是澳大利亚科学家 Walsh ,他在 1955 年提出了利用原子吸收现象作元素的化学分析的物理基础与化学实践并创造性地使用空心阴极灯作为实用的锐线光源,克服了技术难题,为原子吸收仪器的发展打下牢固的基础。他当时所倡导的分析方法主要是火焰原子吸收技术。 195
无火焰原子吸收分光光度法原理和应用
本法适用于生活饮用水及其水源水中铝、铜、镉、铅、银、钼、钴、镍、钡、钒、铍、铊的测定。样品经适当处理后,注入石墨炉原子化器,所含的金属离子在石墨管内以原子化高温蒸发解离为原子蒸气。待测元素的基态原子吸收来自同种元素空心阴极灯发射的共振线,其吸收强度在一定范围内与金属浓度成正比。所用设备、耗材:氩气、
实验室无火焰原子吸收光谱测定条件的选择
在无火焰原子吸收测定中仪器参数的选择,包括波长、光谱通带和灯电流的选样等原则和火焰原子吸收法相同。一、原子化器种类的选择一般中低温原子化元素选择普通石墨管原子化器,对于容易生成难熔碳化物的金素,如Ti、Zr、Hf、V、Nb、Ta、Mo、W、Si、B、Y、稀土、U、Th等,可选用热解石墨管或金属舟皿。
火焰原子吸收法的原理
其实俗一点,有点象分光光度计.火焰部分就是吸收池,也要选波长,检测用的也是灯(可能会有氘灯、钨灯的区分),想了解原理,先了解结构:光源系统——原子化系统——分光系统——检测系统1、光源发出能被待测元素吸收的特定波长的辐射2、被测物质在原子化系统被加热使其变成原子态(原子态可以吸收上面说的辐射)3、分
什么是火焰原子吸收法
其实俗一点,有点象分光光度计.火焰部分就是吸收池,也要选波长,检测用的也是灯(可能会有氘灯、钨灯的区分),想了解原理,先了解结构:光源系统——原子化系统——分光系统——检测系统1、光源发出能被待测元素吸收的特定波长的辐射2、被测物质在原子化系统被加热使其变成原子态(原子态可以吸收上面说的辐射)3、分
什么是火焰原子吸收法
其实俗一点,有点象分光光度计。火焰部分就是吸收池,也要选波长,检测用的也是灯(可能会有氘灯、钨灯的区分),想了解原理,先了解结构:光源系统——原子化系统——分光系统——检测系统1、光源发出能被待测元素吸收的特定波长的辐射2、被测物质在原子化系统被加热使其变成原子态(原子态可以吸收上面说的辐射)3、分
火焰原子吸收法的原理
其实俗一点,有点象分光光度计.火焰部分就是吸收池,也要选波长,检测用的也是灯(可能会有氘灯、钨灯的区分),想了解原理,先了解结构:光源系统——原子化系统——分光系统——检测系统1、光源发出能被待测元素吸收的特定波长的辐射2、被测物质在原子化系统被加热使其变成原子态(原子态可以吸收上面说的辐射)3、分