李戎教授Cell发表错误蛋白惊人发现
来自Stowers医学研究所的科学家们,生成了一个有关细胞错误折叠蛋白聚集物的惊人研究发现。这些聚集物往往与诸如帕金森氏病一类的老年性疾病相关联。研究人员将他们的研究结果在线发表在10月16日的《细胞》(Cell)杂志上。 领导这一研究的是Stowers研究所研究员李戎(Rong Li)博士。这位华裔女科学家的教育背景几乎都是在数一数二的高校中完成:1988年毕业于耶鲁大学,1992年加州大学旧金山分校获得博士学位,之后到加州大学伯克利分校进行博士后研究,1994年进入哈佛医学院。 利用三维延时摄影(time-lapse movie)来追踪酵母细胞中错误折叠蛋白的命运,研究人员确定了大约90%的聚集物都是在细胞的蛋白质合成位点——内质网(ER)的表面形成。过去人们认为,错误折叠蛋白是在细胞溶质中自发地簇聚在一起。 李戎说:“我们的研究结果向聚集过程是累积的错误折叠蛋白的一个被动结果这一观点发出了挑战。”利用衰老研究中经......阅读全文
Nature:揭示一种阻止蛋白聚集物在线粒体中聚集的新机制
蛋白聚集物对线粒体功能是有害的,因而会破坏向它们的宿主细胞提供化学能。在一项新的研究中,来自德国慕尼黑大学等研究机构的研究人员描述了一种阻止这些蛋白聚集物在线粒体中聚集的蛋白复合物。相关研究结果近期发表在Nature期刊上,论文标题为“Structure and function of Vms1
TDP43可导致线粒体损伤并激活线粒体去折叠蛋白反应
TDP-43是一个多功能的DNA和RNA结合蛋白,由TARDBP基因编码,在细胞内的RNA转录、选择性剪接及mRNA稳定性调节等过程中发挥功能。在ALS (amyotrophic lateral sclerosis)和FTLD (frontotemporal lobar degeneration
神经聚集物
实验方法原理 从妊娠 17 d 或 18 d 的胎鼠取出脑(与地方动物伦理委员会联系),将脑制成单细胞悬液。通过在用琼脂预涂的多孔培养板中培养,使脑细胞形成聚集物。在 20 d 的培养过程中,聚集物中的细胞形成成熟的器官样脑结构。
神经聚集物
方案25.5 神经聚集物 实验方法原理 从妊娠 17 d 或 18 d 的胎鼠取出脑(与地方动物伦理委员会联系),将脑制成单细胞悬液。通过在用琼脂预涂的多孔培
神经聚集物
实验方法原理从妊娠 17 d 或 18 d 的胎鼠取出脑(与地方动物伦理委员会联系),将脑制成单细胞悬液。通过在用琼脂预涂的多孔培养板中培养,使脑细胞形成聚集物。在 20 d 的培养过程中,聚集物中的细胞形成成熟的器官样脑结构。实验材料PBSAⅡ型胰蛋白酶试剂、试剂盒Dulbecco改良的Eagle
Nature:揭示伴侣蛋白ClpB清理有毒蛋白聚集物机制
细胞如何解开聚集在一起的蛋白?在一项新的研究中,来自荷兰国家原子分子研究所(AMOLF)和德国癌症研究中心的研究人员如今发现伴侣蛋白ClpB可强行拉开蛋白链中暴露的环状结构(loop),随后将它们从蛋白聚集物中拉取出来。相关研究结果于2020年1月29日在线发表在Nature期刊上,论文标题为“
帕金森病之SCF蛋白复合物分解α突触核蛋白聚集物机制
一项新的研究中,来自瑞士苏黎世联邦理工学院、苏黎世大学医院和美国加州大学圣地亚哥分校的研究人员发现了脑细胞用来保护它们自己免受蛋白聚集物损伤的新机制。这一新发现可能为新的治疗方法提供基础。相关研究结果近期发表在Science Translational Medicine期刊上,论文标题为“A c
李戎教授Cell发表错误蛋白惊人发现
来自Stowers医学研究所的科学家们,生成了一个有关细胞错误折叠蛋白聚集物的惊人研究发现。这些聚集物往往与诸如帕金森氏病一类的老年性疾病相关联。研究人员将他们的研究结果在线发表在10月16日的《细胞》(Cell)杂志上。 领导这一研究的是Stowers研究所研究员李戎(Rong Li)博士。
蛋白聚集的机理
蛋白质聚集通常是通过一系列过程实现,首先是蛋白内部结构的变化导致形成二聚体或寡聚体,随后聚集体生长,最终形成亚可见或可见的颗粒。1. 初始聚集/成核蛋白质存在一定固有的构象波动或局部结构扰动,这些结构的变动可能会导致蛋白质中具有聚集倾向的序列或“热点(hot spot)”被暴露,进而使其与另外的蛋白
突触核蛋白的硝基化聚集物具有细胞毒性
生物物理所发现突触核蛋白a-synuclein的硝基化聚集物具有细胞毒性 我国已经进入老龄化社会,神经退行性疾病给个人、家庭、社会造成了沉重的经济和精神负担。神经元的变性死亡是神经退行性疾病的重要病理机制。 中国科学院生物物理研究所脑与认知科学国家重点实验室赫荣乔研究组在蛋白质的硝基化修饰方
Nature:老年痴呆、帕金森...-线粒体表示他很忙
美国约翰霍普金斯大学的科学家报告,利用酵母和人类细胞,他们发现了细胞通过线粒体来清除错误折叠的蛋白质聚集体。这是一个全新的途径,这一发现有助于解释帕金森氏症、阿尔茨海默症等在发育过程中出错的部分原因。研究成果于 3 月 1 日发表在《 Nature 》杂志上。 在细胞中,蛋白质被损坏、发生错
Wnt信号通路介导神经到肠道之间线粒体未折叠
线粒体不仅是细胞能量供给的中心,也是调控衰老进程以及影响神经退行性疾病的重要细胞器之一。当线粒体功能损伤,将启动细胞内的线粒体未折叠蛋白反应(UPRmt),使线粒体分子伴侣、蛋白酶、代谢相关基因等表达水平上调,重建线粒体稳态平衡。在多细胞的机体内,不同组织之间(神经细胞-肠道细胞)也会感知并协调
线粒体呼吸链膜蛋白复合物Ⅰ的结构揭晓
德国科学家成功揭示细胞线粒体呼吸链膜蛋白复合物Ⅰ的结构,并发现了分子复合物中的全新能量转换机制,细胞可通过该机制使用储存在营养中的能量。相关研究成果发表在7月1日的《科学》杂志网络版上。 有氧呼吸是动植物进行呼吸作用的主要形式,细胞在氧的参与下,通过酶的催化作用将糖类等有机
Cell-Rep:NAD-+可以恢复与年龄有关的肌肉退化
我们随着年龄增长,肌肉变得更弱,人因此变得步履蹒跚。然而,对定义肌肉衰老的生物学过程和生物标记物的研究工作尚未确定其根本原因。 现在,来自EPFL生命科学学院Johan Auwerx实验室的一组科学家从另一个角度审视了这个问题:肌肉衰老与变性肌肉疾病之间的相似性。他们发现了自然衰老过程中沉积在
PNAS:线粒体蛋白转运的“两面性”
线粒体是细胞的能量工厂。通过氧化(底物水平的磷酸化)分解糖类的代谢物,合成着细胞所需的绝大多数能量货币——ATP。因此,线粒体的正常工作,就像炼油厂或者发电厂对现代社会那样重要。线粒体的正常工作需要大量的蛋白质提供支持。一般认为,在线粒体中,蛋白质含量是通过细胞质新合成蛋白质输入和老旧蛋白质的降
蛋白质折叠的过程
主要结构蛋白质的主要结构及其线性氨基酸序列决定了其天然构象。特定氨基酸残基及其在多肽链中的位置是决定因素,蛋白质的某些部分紧密折叠在一起并形成其三维构象。氨基酸组成不如序列重要。然而,折叠的基本事实仍然是,每种蛋白质的氨基酸序列都包含指定天然结构和达到该状态的途径的信息。这并不是说几乎相同的氨基酸序
什么是蛋白质折叠?
蛋白质折叠是物理过程,通过该蛋白链获得其天然 的三维结构中,构象即通常生物功能,以迅速和可再现的方式。这是一个物理过程,多肽从一个随机的线圈中折叠成其特征和功能性三维结构。当从mRNA序列翻译成氨基酸的线性链时,每种蛋白质都以未折叠的多肽或无规卷曲的形式存在。该多肽缺乏任何稳定的(持久的)三维结构。
简述突触核蛋白错误折叠
研究发现α-突触核蛋白正常、错误折叠及其寡聚化之间存在动态平衡,当这种平衡被打破后原纤维迅速聚集成大分子、不溶性的细纤维;α-突触核蛋白在不同的影响因素下会表现出许多种形态,包括舒展态、溶解前球型态、α-螺旋态(膜结合),β-片层态、二聚体态、寡聚体态、以及不可溶的无定型态和纤维态;α-突触核蛋
《Cell》发现新细胞程序
Max Planck生化研究所(MPIB)和Ludwig-Maximilians大学(LMU)的科学家报道,除了阿尔兹海默症、帕金森症和亨廷顿病等神经变性疾病情况下的蛋白质聚集会对细胞功能造成损害,正常细胞中,持续制造的异常聚集倾向蛋白也会造成细胞呼吸系统局部故障。除非能被降解去除,否则偏爱躲在
Cell:揭示细胞质蛋白Vms1保护线粒体的新机制
阿尔茨海默病、帕金森病和亨廷顿舞蹈病等神经退行性疾病的一种共同特征是患者细胞中的蛋白聚集物堆积会破坏细胞功能。如今,在一项新的研究中,来自德国马克斯-普朗克生物化学研究所(MPIB)和慕尼黑大学(LMU)的研究人员报道即便在正常的细胞中,由于线粒体的呼吸系统存在部分功能障碍,异常的容易发生聚集的
蛋白聚集体的检测
1. 可溶聚集体最小的可溶聚集体是二聚体,可溶聚集体的大小上限则因蛋白质和溶液条件而异。这些可溶的蛋白聚集体,无论是通过物理相互作用还是化学修饰,通常可以用SEC-HPLC检测。该方法的局限在于样品在层析柱中的稀释可能会导致聚集体的解离、不同蛋白质需要不同的流动相、同时流动相或高压也可能会诱导蛋白质
蛋白质折叠的主要结构
蛋白质的主要结构及其线性氨基酸序列决定了其天然构象。特定氨基酸残基及其在多肽链中的位置是决定因素,蛋白质的某些部分紧密折叠在一起并形成其三维构象。氨基酸组成不如序列重要。然而,折叠的基本事实仍然是,每种蛋白质的氨基酸序列都包含指定天然结构和达到该状态的途径的信息。这并不是说几乎相同的氨基酸序列总是相
蛋白质在缺氧时折叠
蛋白质通常由成百上千个独立的部分组成,即氨基酸。它们像链条上的链环一样连接在一起。然而,蛋白质分子不能像长丝一样来回摆动。因此,每一件作品在创作过程中都以自己独特的方式折叠起来。对于从细胞外释放或运输到细胞内储存的蛋白质,这种折叠发生在细胞的一个特定位置:内质网(ER)。这里,在蛋白质折叠过程中相互
PNAS:药物伴侣修正蛋白错误折叠
Oregon Health & Science大学的研究人员在小鼠中展示了一项革命性的新技术,该技术将有望治疗蛋白错误折叠所引起的多种人类疾病,例如囊性纤维化、白内障和阿尔茨海默症等。文章发表在美国国家科学院院刊PNAS杂志上。 基因突变会使蛋白分子发生错误折叠,这些蛋白仍然保有功能,
生物物理所发现清除错误折叠蛋白质聚集体的内质网自噬通路
内质网是真核细胞中分布最广泛的细胞器,是分泌蛋白和膜蛋白折叠、加工的主要场所。内质网自噬(ER-phagy)是溶酶体对内质网的降解,对蛋白质质量控制以及维持内质网新陈代谢和生理功能至关重要。溶酶体降解内质网的现象在半个世纪前便有报道,但直至2015年内质网自噬受体的发现才最终确认内质网自噬是一个选择
帕金森病中细胞为什么死亡?科学家找到了原因
我们知道,帕金森病中的神经元损失与异常线粒体功能和蛋白抑制障碍相关,而识别与这些病理相关的机制,对于进一步理解PD发病机制至关重要。 论文的第一作者、圭尔夫大学Scott Ryan教授发现,心磷脂(Cardiolipin)是神经细胞内的一种分子,有助于确保 “α-突触核蛋白”的蛋白质正确折叠。
PNAS:新探针量化细胞内折叠和错误折叠蛋白水平
美国Scripps研究所(TSRI)的科学家发明了一种小分子折叠探针,可在不同条件下量化细胞内正常折叠的功能性蛋白,以及疾病相关的错误折叠目的蛋白。 科学家们长期以来都需要更好的工具在细胞内进行这种测量,因为蛋白质错误折叠是组织损伤的一个主要原因。以过多蛋白错误折叠为特征的疾病,折磨着全球
提出相分离调控线粒体基因组空间秩序的模型
中国科学院广州生物医药与健康研究院研究员刘兴国团队联合清华大学、南方科技大学、北京大学、香港中文大学等科研人员,研究发现线粒体基因组与其结合蛋白,利用生物分子最基础的自发聚集的相分离性质,调控线粒体类核的组装以及转录的复杂过程,构建了首个相分离调控线粒体基因组结构与功能的模型。相关研究1
相分离调控线粒体基因组空间秩序的模型
中国科学院广州生物医药与健康研究院研究员刘兴国团队联合清华大学、南方科技大学、北京大学、香港中文大学等科研人员,研究发现线粒体基因组与其结合蛋白,利用生物分子最基础的自发聚集的相分离性质,调控线粒体类核的组装以及转录的复杂过程,构建了首个相分离调控线粒体基因组结构与功能的模型。相关研究10月28日在
帕金森病中细胞为什么死亡-科学家找到了原因-Nature子刊
帕金森病(PD)是一种常见的退行性运动障碍。近日,圭尔夫大学(University of Guelph)的一位研究人员发现了该病中神经细胞死亡背后的因素之一,或可以减缓这种致命神经退行性疾病的进展。 来源: CC0 Public Domain 我们知道,帕金森病中的神经元损失与异常线