研究发现染色质装配因子1具有重要表观遗传调控作用

中国科学院生物物理研究所焦仁杰研究员课题组最新研究发现,染色质装配因子 1(chromatin assembly factor 1, CAF-1)对异染色质区域的基因表达发挥十分重要的表观遗传调控作用。他们的成果已被细胞生物学研究领域的专业期刊J. Cell Sci.接受发表。 在真核生物细胞中,DNA与组蛋白一起被组装成染色质结构。正确的染色质结构是保证DNA复制、转录及重组和修复正常进行的基础。组蛋白的修饰、核小体的组织和变位(nucleosome positioning)会改变染色质的高级结构,从而控制基因的表达和沉默。真核生物的染色质由常染色质和异染色质组成,异染色质区域富含一些与转录抑制相关的表观遗传学修饰,这些表观遗传信息的形成、维持和可塑性(plasticity)是当前科学家们十分关注的问题。 最新研究发现,dCAF-1对异染色质区域组蛋白H3K9位点的甲基化水平以及HP1蛋白的募集具......阅读全文

细胞核的结构

  细胞核(nucleus)是遗传信息的载体,细胞的调节中心,其形态随细胞所处的周期阶段而异,通常以间期核为准。  细胞核外被核膜。核膜由内外二层各厚约3nm的单位膜构成,中间为2~5nm宽的间隙(核周隙);核膜上有直径约50nm的微孔,作为核浆与胞浆间交通的孔道,其数目因细胞类型和功能而异,多者可

细胞核及核内物质

  细胞核(nucleus)是遗传信息的载体,细胞的调节中心,其形态随细胞所处的周期阶段而异,通常以间期核为准。  细胞核外被核膜。核膜由内外二层各厚约3nm的单位膜构成,中间为2~5nm宽的间隙(核周隙);核膜上有直径约50nm的微孔,作为核浆与胞浆间交通的孔道,其数目因细胞类型和功能而异多者可占

研究揭示H2AK119ub1在染色质蔓延以及跨细胞周期继承机制

  3月23日,中国科学院生物物理研究所生物大分子国家重点实验室李国红课题组在Nature Cell Biology上发表了题为RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propaga

Nature-表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

染色质状态介导的植物“冬季低温记忆”母系遗传机制查明

  中科院分子植物科学卓越创新中心上海植物逆境生物学研究中心何跃辉研究组的一项研究揭示了长期低温(寒冬)诱导的“春化”状态(或“冬季低温记忆”)通过卵细胞传递给合子和早期胚胎的母系遗传机制。相关研究论文近日发表于《自然—植物》。染色质状态介导的植物“冬季低温记忆”母系遗传机制  有些植物可以记住过去

研究发现去甲基化酶REF6是基因组中靶向的重要因素

  核小体是真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白翻译后共价修饰是表观遗传调控的重要方式之一,通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及生长发育中发挥重要的调控作用。基因

研究揭示出一种维持异染色质可塑性的机制

  染色质是真核生物遗传物质的包装形式。按照其包装的致密程度,染色质可分为较为松散的常染色质和较为致密的异染色质。异染色质的这种结构特征不利于蛋白质的招募,因而可能会危及到正常的异染色质DNA代谢过程,例如DNA复制和重组。   1月13日,PLoS Genetics杂志发表了中科院

细胞核的区别简述

  染色质和染色体在化学成分上并没有什么不同,而只是分别处于不同的功能阶段的不同的构型。染色质是指间期细胞内由DNA、组蛋白和非组蛋白及少量RNA组成的线形复合结构,是间期细胞遗传物质存在形式。固定染色后,在光镜下能看到细胞核中经许多或粗或细的长丝交织成网的物质,从形态上可以分为常染色质(euchr

庄小威院士:新成像方法测量染色质的表观遗传修饰

  空间组学方法的最新发展使得单细胞转录组分析和三维基因组组织具有较高的空间分辨率。空间分辨单细胞表观基因组学方法将扩展空间组学工具的知识库,加速对细胞和组织功能的空间调节的理解。  2022年10月21日,哈佛大学庄小威团队在Cell 在线发表题为“Spatially resolved epige

研究观测到染色质重塑中DNA的BZ构象转变

  近年来,Z型DNA(Z-DNA)的研究引发关注,但是在细胞中对其进行观测还存在困难,主要原因是缺少一种简便可靠的手段对其进行直接观测。最近,中国科学院合肥物质科学研究院智能机械研究所研究员黄青课题组与郑州大学张凤秋课题组合作,利用红外光谱技术观测并研究染色质重塑中DNA的B-Z构象转变,相关研究

Cell-|-染色质激活或抑制状态决定了核小体分离的差异性

  染色质结构通过促进或抑制该结构的转录可以控制基因组的功能和细胞身份认定。这些染色质结构中存在特定的组蛋白翻译后修饰(posttranslational modifications,PTMs),它们与特定转录状态相关,并可促进抑制性染色体结构的形成,影响基因的表达【1】。  为了在细胞分裂时依然保

清华Nature子刊发表表观遗传学新成果

  生物通报道:高等生物的基因组DNA围绕着由四种组蛋白组成的八聚体,形成碟状的核小体结构。基因组DNA以这样的形式包装成为染色质,使DNA受到良好的保护。通过“读取”模块识别组蛋白共价修饰是表观遗传学调控的一个主要机制。  最近人们发现了多种组蛋白赖氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu

植生生态所组蛋白变体介导的表观遗传调控研究取得进展

  中科院上海生命科学研究院植生生态所植物分子遗传国家重点实验室方玉达研究组通过研究,发现了组蛋白变体H3.3分子中决定其嵌入核小体和从核小体上解离的信号氨基酸。   组蛋白变体嵌入核小体形成了结构和功能各异的核小体,在生物体表观遗传过程中起非常重要的作用。组蛋白H3家族包括H3.1

操纵组蛋白H3.3的路径为多能细胞提供一种新方法

  取出一个成熟细胞并移除其身份,从而使其可成为任何种类细胞——核重组,在修复受损组织及在化疗后替换骨髓等领域具有广阔前景。2012年诺贝尔医学奖得主约翰·格登博士最新发表在《表观遗传学和染色质研究》杂志上的论文表明,由Hira蛋白存储的组蛋白H3.3,是将细胞核恢复多能性,即发展成为多种细胞类型的

操纵组蛋白H3.3或可抹除细胞“记忆”

  取出一个成熟细胞并移除其身份,从而使其可成为任何种类细胞——核重组,在修复受损组织及在化疗后替换骨髓等领域具有广阔前景。2012年诺贝尔医学奖得主约翰·格登博士最新发表在《表观遗传学和染色质研究》杂志上的论文表明,由Hira蛋白存储的组蛋白H3.3,是将细胞核恢复多能性,即发展成为多种细胞类型的

操纵组蛋白H3.3或可抹除细胞“记忆

  取出一个成熟细胞并移除其身份,从而使其可成为任何种类细胞――核重组,在修复受损组织及在化疗后替换骨髓等领域具有广阔前景。2012年诺贝尔医学奖得主约翰・格登博士最新发表在《表观遗传学和染色质研究》杂志上的论文表明,由Hira蛋白存储的组蛋白H3.3,是将细胞核恢复多能性,即发展成为多种细胞类型的

染色体的四级结构分别是什么

染色体的四级结构分别是由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包

中科院科学家在染色体组装新机制方面取得新进展

  细胞核是真核细胞最为核心的结构。然而就在这个小小的结构中包含了一个细胞分裂、生长最为重要的遗传物质--DNA。这些DNA是如何反复折叠,在形成高度聚集染色质的同时还能够确保基因表达调控因子能够与DNA进行正常的相互作用?这一问题一直都困扰着科学家。  最近,中科院生物物理所的周政课题组在国际期刊

单分子力谱定量解析泛素修饰对基因调控研究获进展

  人类基因组包含大约31.6亿个DNA碱基对,线性DNA分子作为庞大遗传信息的载体一般都比较长(人类一条染色体的DNA长度约为2米),生命通过组蛋白将DNA分子有序组织压缩形成微米级别的染色质存储到细胞核中。核小体是染色质的结构和功能的最基本单元,其中DNA缠绕在组蛋白巴聚体周围约两圈,完成对D

石晓冰:CRISPR发现与癌症有关的蛋白“阅读器”

  近二十年来,科学家开始逐渐认识到DNA中的遗传密码只代表了生命蓝图中的一部分信息。遗传信息还来自于DNA结构上的特殊化学标签模式,这些表观遗传学标签决定了DNA包装的紧密程度以及特定基因的开关。  2014年,石晓冰研究组与清华大学李海涛教授研究组合作发现了一类新型组蛋白乙酰化修饰“阅读器”:Y

研究发现激酶解锁异染色质的“递进修饰”模式

  11月24日,《细胞死亡&分化》(Cell Death & Differentiation)在线发表了中国科学院广州生物医药与健康研究院刘兴国/裴端卿/陈可实团队的最新研究成果MAP2K6 Remodels Chromatin and Facilitates Reprogramming by A

免疫系统和表观遗传学调控:一个新的前沿领域

   表观遗传学(epigenetics)研究转录前基因在染色质水平的结构修饰对基因功能的影响,这种修饰可通过细胞分裂和增值周期进行传递。表观遗传学已成为生命科学中普遍关注的前沿,在功能基因组时代尤其如此。免疫系统被认为是一个解析表观遗传学调控机制的良好模型,而且免疫细胞伯分化及功能表达和表观遗

清华、同济Nature子刊发布表观遗传研究新成果

  来自清华大学、同济大学等处的研究人员证实,组蛋白H1介导的表观遗传调控通过调节H4K16乙酰化控制了生殖干细胞(GSC)自我更新。这一重要的研究发现发布在11月19日的《自然通讯》(Nature Communications)杂志上。  清华大学医学院的倪建泉(Jian-Quan Ni)研究员及

表观遗传学和人类疾病

上个世纪50年代初,Watson和Crick建立了DNA分子结构模型,极大程度地促进了生命科学的发展。自此遗传学便成为现代医学研究领域中一个重要的分支。人类已经认识到基因突变可以导致疾病的发生,如慢性进行性舞蹈病(Huntington's chorea, Hc)和囊性纤维化等。近年来

Cell新发现颠覆表观遗传传统认知

  来自美国托马斯杰斐逊大学的一个研究团队获得了关于组蛋白修饰作用相反的证据。在一项果蝇胚胎研究中,他们发现亲代的甲基化组蛋白并没有转移给子代DNA。相反,在DNA复制后,由新合成的未修饰组蛋白组装成了新的核小体。相关论文发布在8月23日的《细胞》(Cell)杂志上。   托马斯杰斐逊大学生物化学

microRNA的肿瘤抑制因子角色

美国南加州大学的研究人员报道说,一种新的方法通过活化癌细胞基因组中保护性的microRNA的表达,从而使致癌基因的表达水平显著降低。这篇发表在6月的Cancer Cell杂志上的文章证明已知能调节基因表达的制剂还能够影响调节性的RNA。这种调节性的RNA即为microRNA,它能充当正常细胞中的肿瘤

北京大学Cell子刊探究明星抑癌基因新功能

  来自北京大学、康奈尔大学Weill医学院的研究人员在新研究中证实,PTEN通过与组蛋白H1相互作用控制了染色质凝聚,这一研究发现发表在9月4日的《Cell Reports》杂志上。  北京大学基础医学院的尹玉新(Yuxin Yin)教授以及康奈尔大学Weill医学院的Wen H. Shen是这篇

Nature重要论文:表观遗传学突破性研究发现

  研究组蛋白尾部的翻译后修饰是表观遗传学领域最大研究方向之一。增进对于这些修饰添加、识别和移除机制的认识是了解基于表观遗传的人类疾病基本机制,发现这些疾病新疗法的必要条件。标记负责染色质修饰的酶和蛋白质活性的一种方法就是采用它们的化学活性抑制剂。尽管这种方法在揭示组蛋白修饰调控机制方面具

清华大学、德克萨斯大学Cell联合发布表观遗传重要发现

  谈到配送,就连联邦快递(Federal Express®)和UPS快递(UPS®)也无法与人体相比。在癌症生物学中存在着一个令人惊叹的包装和传送系统,其影响了人体是否将会形成癌症。  组蛋白,这一染色质的主要组成元件是一个让人感兴趣的领域。人们认为染色质畸变可导致与癌症相关的DNA损伤。来自清华

施晓冰博士Cell发布表观遗传重要发现

  谈到配送,就连联邦快递(Federal Express®)和UPS快递(UPS®)也无法与人体相比。在癌症生物学中存在着一个令人惊叹的包装和传送系统,其影响了人体是否将会形成癌症。  组蛋白,这一染色质的主要组成元件是一个让人感兴趣的领域。人们认为染色质畸变可导致与癌症相关的DNA损伤。来自德克