Antpedia LOGO WIKI资讯

Nature子刊:深度学习预测传统RNASeq无法检测的选择性剪接

项目负责人Yi Xing博士是CHOP计算和基因组医学中心主任,本周他与博士生Zijun Zhang和Zhicheng Pan在《Nature Methods》报道了这款DARTS的框架。DARTS,又称为深度学习加强的RNA-seq转录剪接分析(Deep-learning Augmented RNA-seq analysis of Transcript Splicing)。利用基于深度学习的预测,来驾驭公共数据集中大量RNA测序(RNA-seq)信息,从而揭示选择性剪接。 “DARTS的概念创新在于,它提供了一个桥梁,从公共领域的大数据到个体调查研究的小型数据集,”Xing说。“DARTS可以将大量公共RNA-seq数据转换成一个知识库,这个知识库被表示为一个深层的神经网络,描述如何调节剪接。这个计算框架推广到任何一个独立的实验室将是非常有用的,可以提高实验的效率,有助于发现新东西。只需读取2000或3000万个RNA序......阅读全文

Science:人类凭什么成为万物之灵

  多伦多大学的研究人员发现,我们人类成为地球上最聪明的动物得益于一个关键性分子事件。研究显示,PTBP1蛋白的一个小改变控制着神经元的生成,帮助哺乳动物进化出更大更复杂的大脑。这项研究发表在八月二十日的Science杂志上。  在脊椎动物中,大脑的大小和复杂程度存在着很大的差异。举例来说,人类和青

昆明动物所研究发现选择性剪切在果蝇新基因中的进化

  选择性剪切(alternative splicing)是一个基因编码出不同转录本和蛋白质的重要途径,对满足生物体所需蛋白多样性具有重要意义。此前的研究显示,新基因通常在序列、基因结构和表达模式上与其祖先基因发生快速的分化。基因结构的改变可能伴随着选择性剪切的改变,但关于新基因选择性

Cell子刊:选择性剪切影响癌细胞代谢

  Ludwig癌症研究所的Paul S. Mischel教授领导研究团队,发现单个基因突变会改变关键基因的剪切方式,影响脑癌细胞的代谢。该突变不仅能帮助脑癌细胞生存,还会使这些细胞长得更快,文章发表在Cell旗下的Cell Metabolism杂志上。   单个基因可以通过选择性剪切,在

基因数据分析的主流软件

在过去的几年中,许多生物的基因组完成了测序工作,如何对如此庞大的原始序列信息进行分析和应用,正是现在最为棘手的问题。大量的基因预测软件和在线工具应运而生。如何广泛而深入地了解并能有的放矢地利用这些工具,已经成为21世纪分子生物学家的必修课。随着大规模EST和cDNA序列信息的获取,那些基于表达序列同

大鼠选择性剪切体组织因子途径抑制物酶联免疫分析

大鼠选择性剪切体组织因子途径抑制物(as-TFPI)酶联免疫分析试剂盒使用说明书本试剂仅供研究使用       目的:本试剂盒用于测定大鼠血清,血浆,细胞上清及相关液体样本中选择性剪切体组织因子途径抑制物(as-TFPI)的含量。

大鼠选择性剪切体组织因子途径抑制物酶联免疫分析

大鼠选择性剪切体组织因子途径抑制物(as-TFPI)酶联免疫分析试剂盒使用说明书本试剂仅供研究使用       目的:本试剂盒用于测定大鼠血清,血浆,细胞上清及相关液体样本中选择性剪切体组织因子途径抑制物(as-TFPI)的含量。

新剪切模式揭示两千多种新蛋白

  十多年前,人们就已经完成了对人类和小鼠基因组的测序,现在每个人都可以通过数据库使用这些信息。然而,人类和小鼠的蛋白质列表还未完成,最近研究人员还在一种新剪切模式的基础上,发现了两千多种新的哺乳动物蛋白。数据库中列有编码这些蛋白的核苷酸序列,只不过人们原先认为它们没有得到翻译。   “我们在研究

南方医科大博士Cell发表重要成果

  一个跨国团队首次对选择性剪切进行了大规模的系统性研究。他们最近在Cell杂志上发表文章指出,同一个基因编码的蛋白质异构体常常承担着截然不同的作用,不论它们结构上有多么相似。南方医科大学第一附属医院(南方医院)的Xinping Yang博士是这篇文章的共同第一作者。  这一发现将显著影响我们的生物

Cell揭示新型细胞质控机制

  mRNA是DNA和蛋白质生产之间的桥梁。当mRNA将DNA的遗传信息带出细胞核时,需要去除非编码片段,将剩下的片段拼接在一起。这个剪切过程是非常关键的,至少15%的人类疾病与剪切错误有关,包括一些癌症和神经退行性疾病。  芝加哥大学的科学家们发现,两种RNA解旋酶在剪切的质量控制中起到了关键作用

新发现!手性纳米粒子可以对DNA选择性剪切

  在国家自然科学基金项目(项目编号:21522102,21631005)等资助下,江南大学匡华教授研究团队率先发现手性纳米粒子的DNA特异性剪切效应,并实现细胞与活体内靶标DNA的精确剪切。相关成果以“Site-Selective Photoinduced Cleavage and Profili

青岛能源所发现纤维小体“家传配方”的编码与控制机制

  木质纤维素的高效降解是纤维素基液体燃料与沼气等清洁能源产业的关键瓶颈之一,也是生物圈碳循环和生态平衡的重要环节。近日,中国科学院青岛生物能源与过程研究所在纤维素生物降解机制研究中取得突破,发现了一种基于RNA选择性剪切与保护的崭新调控方式。该工作于4月24日在线发表于Nature Communi

高密度光纤芯片技术及其在功能基因组学中的应用

DNA微阵列技术的发展[1]带来了基因表达研究方法上的一场革命。传统的Northern blots或RT-PCR方法只能逐一地研究单个基因的表达,而DNA微阵列技术可以同时例行检测成千上万个基因表达水平的变化,在微芯片上置入寡核苷酸探针或相应于mRNA序列的cDNA,与细胞cDNA或cRNA进行杂交

磷酸钙介导的高分子量基因组 DNA 转染细胞实验

下述方法是对 Graham 与 Van der Eb(1973) 建立的磷酸转方法的改进,用高分子量基因组 DNA 代替了质粒 DNA。这一方法对建立稳定的携带补充宿主染色体基因突变的转染基因的细胞系尤其有用(Segeetal.1984,Kingsley et al.1986)。本实验来源于分子克隆

磷酸钙介导的高分子量基因组 DNA 转染细胞实验

            实验材料 指数生长的哺乳动物细胞培养物 试剂、试剂盒 CaCl2

磷酸钙介导的高分子量基因组 DNA 转染细胞实验

实验材料 指数生长的哺乳动物细胞培养物试剂、试剂盒 CaCl2甘油HEPES 盐缓冲液异丙醇NaCl基因组 DNA带有选择性标志的质粒细胞生长培养基仪器、耗材 聚乙烯试管Shepherd’s crook组织培养皿实验步骤 材料缓冲液与溶液贮存液、缓冲液与试剂的成分见附录 1。稀释贮存液至所浓度。Ca

BIORAD 采用 Profinity eXactTM融合标签表达系统纯化 重组蛋白

  BIORAD 采用 Profinity eXactTM融合标签表达系统纯化无标签的重组蛋白   亲和标签已成为后基因组学时代纯化重组蛋白常用手段。此方法无需了解蛋白质的生化特性或生理活性,就可通过带标签的重组融合蛋白选择性地与层析基质上的配体结合,从而得以纯化任何蛋白质。此方法与常规的层析方

BIORAD 采用 Profinity eXactTM 纯化无标签的重组蛋白

  BIORAD 采用 Profinity eXactTM融合标签表达系统纯化无标签的重组蛋白   亲和标签已成为后基因组学时代纯化重组蛋白常用手段。此方法无需了解蛋白质的生化特性或生理活性,就可通过带标签的重组融合蛋白选择性地与层析基质上的配体结合,从而得以纯化任何蛋白质。此方法与常规的层析方

BIORAD 采用 Profinity eXactTM融合标签表达系统纯化无标签...

BIORAD 采用 Profinity eXactTM融合标签表达系统纯化无标签的重组蛋白亲和标签已成为后基因组学时代纯化重组蛋白常用手段。此方法无需了解蛋白质的生化特性或生理活性,就可通过带标签的重组融合蛋白选择性地与层析基质上的配体结合,从而得以纯化任何蛋白质。此方法与常规的层析方法不同之处在于

单分子测序揭示艾滋病毒可变剪切新模式

  最新一期Nucleic Acids Research上发表了一篇利用PacBio单分子测序方法对HIV-1病毒转录组可变剪切模式的研究。HIV-1病毒是一种典型的RNA病毒,其基因组比目前已知的任何一种病毒基因组都复杂。HIV-1只有一个转录起始位点,却有多种剪切异构体,是研究可变剪切的一种

Science挑战传统认知,剪接的多样性

  大多数的哺乳动物蛋白编码基因都可能有许多种转录物,它们是由纳入外显子变化所导致。过去人们认为所谓的选择性剪接(alternative splicing)事件在物种间有可能是保守的,然而发表在12月20日《科学》(Science)杂志上的两项研究表明大多数并非如此。研究人员甚至认为,高度的选择

2014年药物研发最热门靶点逐个述评

  1.癌症  2000年后肿瘤信号网络被逐渐阐释、完善,大量的分子靶向药物进入临床研究、走上市场,近年针对受体酪氨酸激酶靶点如Bcr-Abl(见1.1)、VEGF/VEGFRs(见1.2)、PDGF/PDGFRs(见1.3)、EGFR/HER2(见1.5)、ALk(见1.7)已有多个药物上市,me

研究揭示天然免疫中caspase活化分子机理

  2月27日,中国科学院生物物理研究所王大成/丁璟珒研究组和北京生命科学研究所邵峰研究组合作,在国际学术期刊《细胞》在线发表题为Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis 的研究论

Nat Rev Genetics | 环状RNA的合成与功能

  环状RNA(circular RNA,circRNA)是一种新兴的内源性非编码RNA(noncoding RNA,ncRNA),是继microRNA (miRNA)以及long noncoding RNA (IncRNA)后非编码RNA家族中极具研究潜力的新成员。越来越多的研究表明,环状RNA具

Nature:藻类基因组解读叶绿体秘史

  我们初学生物时接触得最早的就是光合作用,光合作用利用二氧化碳、水和太阳能合成有机物。世界上最重要的光合作用真核生物(植物)多半并不是自己演化出光合作用能力的,它们的叶绿体是从其他生物中“拿来”的。   这些叶绿体来源于真核宿主吞食的光合细菌,这一过程被称为初级内共生。随后,红藻和绿藻中的叶绿体

浙大Nature子刊解析RNA剪切调控

  近日来自浙江大学生命科学学院的研究人员在新研究中揭示了一个与Dscam互斥剪切有关RNA结构性基因座控制区域(locus control region),相关论文“An RNA architectural locus control region involved in Dscam mu

闪式提取器原理及技术参数详解

一、 闪式提取器的释义闪式提取器是一种用于植物软、硬材料快速提取的新型提取器。依靠高速机械剪切力和超动分子渗滤技术,在室温及溶剂存在下数十秒钟内把植物的根、茎、叶、花、果实等物料破碎至细微颗粒,并使有效成分迅速达到组织内外平衡,通过过滤达到提取之目的。二、闪式提取器的优势该仪器能最大限度保

全基因组连锁分析和高通量测序结合寻找疾病相关基因

  在寻找疾病相关基因的研究中,使用基因芯片对家系进行连锁分析,将基因定位于少数几个区域中,接着进行外显子组测序或全基因组重测序寻找候选区域中的遗传变异,是一个准确高效的研究方案。本文列举了上海交通大学医学院附属新华医院皮肤科李明老师团队的两项研究,均使用了上述方法成功找到了疾病相关的基因变异位点。

全基因组连锁分析和高通量测序结合寻找疾病相关基因

  在寻找疾病相关基因的研究中,使用基因芯片对家系进行连锁分析,将基因定位于少数几个区域中,接着进行外显子组测序或全基因组重测序寻找候选区域中的遗传变异,是一个准确高效的研究方案。本文列举了上海交通大学医学院附属新华医院皮肤科李明老师团队的两项研究,均使用了上述方法成功找到了疾病相关的基因变异位点。

DNA损伤修复机制——非同源末端链接NHEJ和同源重组HR

生命极其脆弱,我们每天在电子辐射、紫外线、雾霾等等各种外部环境及细胞代谢产物等内源因素影响下,我们生命的核心-DNA都会受到不同程度的损伤,其中DNA双链断裂(DSBs,Double strand breaks)是损伤中最为严重的一种,然而生命却又极其强大,我们无时无刻不在受伤,也无时无刻不

上海药物所表观遗传分子机制合作研究取得新进展

  中科院上海药物研究所蒋华良课题组与美国芝加哥大学化学系何川课题组合作,针对胸腺嘧啶DNA糖苷化酶及细菌转录因子AgrA在表观遗传与转录调控中的作用开展研究,取得了良好进展。研究论文分别于2012年2月及2012年5月在线发表在Nature Chemical Biology和PNA