Science重大成果:细胞分化的通用规则

本RIKEN牵头的国际合作项目FANTOM(Functional Annotation of the Mammalian Genome)在本期Science杂志上发表了一项具有里程碑意义的新成果。 研究人员对不同细胞类型的RNA表达进行了广泛的分析。他们发现,当细胞经历表型改变(比如细胞分化)时,最开始活化的是增强子区域。增强子是一种重要的调控开关,一般离自己激活的基因比较远。 细胞进行分化或者应答外界刺激的时候,会发生受到严格控制的转录改变。在这一过程中有两种调控元件在起作用,位于调控基因附近的启动子,和远离调控基因的增强子。不过,人们此前并不清楚这两种元件的作用顺序,推测它们差不多同时起作用。 研究人员让19种人类细胞和14种小鼠细胞经历不同类型的改变,并在这一过程中进行检测和分析。他们发现,是增强子活化触发了一系列后续事件,最终显著改变细胞的表型。 研究显示,在细胞受到刺激后的头15分钟增强子激活,30-100......阅读全文

科学家尝试破解基因增强子之谜

   基因可能是细胞核中的主角,但如果没有强有力的配角阵容,它们也将永远无法发光。随着DNA调控剂(增强子)的延展,将帮助基因在正确的时间和位置启动。尽管研究人员像狗仔队追踪好莱坞明星一样详细调查了基因,增强子依然身处幕后,其工作原理仍然成谜。不过,近日举行的遗传学会议可能将改变现状:研究人员描述了

增强子的增强子的特点作用

① 具有远距离效应。② 无方向性。③ 顺式调节。④ 无物种和基因的特异性。⑤ 具有组织特异性。⑥ 有相位性。⑦ 有的增强子可以对外部信号产生反应。增强子能大大增强启动子的活性。增强子有别于启动子处有两点:[1]增强子对于启动子的位置不固定,而能有很大的变动;[2]它能在两个方向产生相互作用。一个增强

细胞的分化与基因表达

细胞分化是个体发育过程中细胞之间产生稳定差异的过程。所以,细胞分化是指同源细胞通过分裂,发生形态、结构与功能特征稳定差异的过程。细胞分化的实质是基因选择性表达的结果,在个体发育过程中基因按照一定程序相继激活的现象,称为基因的差次表达(differential expression)或顺序表达(Seq

Science重大成果:细胞分化的通用规则

  本RIKEN牵头的国际合作项目FANTOM(Functional Annotation of the Mammalian Genome)在本期Science杂志上发表了一项具有里程碑意义的新成果。  研究人员对不同细胞类型的RNA表达进行了广泛的分析。他们发现,当细胞经历表型改变(比如细胞分化)

Science重大成果:细胞分化的通用规则

  日本RIKEN牵头的国际合作项目FANTOM(Functional Annotation of the Mammalian Genome)在本期Science杂志上发表了一项具有里程碑意义的新成果。  研究人员对不同细胞类型的RNA表达进行了广泛的分析。他们发现,当细胞经历表型改变(比如细胞分化

增强子的定义

增强子是DNA上一小段可与蛋白质结合的区域,与蛋白质结合之后,基因的转录作用将会加强。增强子可能位于基因上游,也可能位于下游。且不一定接近所要作用的基因,这是因为染色质的缠绕结构,使序列上相隔很远的位置也有机会相互接触。

增强子的分类

增强子可分为细胞专一性增强子和诱导性增强子两类:①组织和细胞专一性增强子。许多增强子的增强效应有很高的组织细胞专一性,只有在特定的转录因子(蛋白质)参与下,才能发挥其功能。②诱导性增强子。这种增强子的活性通常要有特定的启动子参与。例如,金属硫蛋白基因可以在多种组织细胞中转录,又可受类固醇激素、锌、镉

Nat-Genet:新方法揭示基因“增强子”的工作机理

  来自日本理化研究所(RIKEN)综合医学科学中心和肿瘤分子研究所(IFOM)的研究人员与京都大学、卡罗林斯卡研究所和DNAFORM的合作者一起开发出了一种被称为NET-CAGE的新技术,揭示了基因组中被称为增强子的非编码基因的结构,增强子可以激活特定基因的功能。基因组的这些部分曾经被认为是不重要

脂肪沉积相关研究取得重要进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/518517.shtm近日,生物学大类一区期刊Cell Proliferation以封面论文形式发表了由四川农业大学猪禽种业全国重点实验室联合重庆市畜科院/国家生猪技术创新中心等单位共同完成的研究论文。

增强子转录在小麦基因表达调控中的作用获揭示

广州大学分子遗传与进化创新研究中心董志诚团队与复旦大学、中国科学院分子植物科学卓越创新中心张一婧团队合作,首次报道了植物中的增强子转录,初步阐释了增强子转录在小麦基因表达调控中的作用。相关研究近日发表于《基因组生物学》(Genome Biology)。 增强子是一种40

“超级增强子”调控关键基因-科学家为其编目录

  据物理学家组织网10月10日报道,最近,美国怀特黑德生物医学研究所科学家发现了一套称为“超级增强子”的基因调控器,能控制、影响人类和小鼠的大量细胞型。研究人员指出,超级增强子富集在基因组的变异区,而这些变异区与多种疾病谱系密切相关,所以它们最终可能在疾病诊断与治疗方面发挥重要作用。相关论文在线发

基因组精确注释新方法:增强子鉴定新技术

  近日,中国农业科学院深圳农业基因组研究所动物功能基因组学创新团队研发出增强子鉴定新技术。该技术与传统技术相比,平均分辨率提高了约10倍,为基因组的精确注释提供了新方法。相关研究成果发表在《核酸研究》(Nucleic Acids Research)上。  增强子是一种基因组非编码区的顺式调控元件,

增强子转录在小麦基因表达调控中的作用获揭示

广州大学分子遗传与进化创新研究中心董志诚团队与复旦大学、中国科学院分子植物科学卓越创新中心张一婧团队合作,首次报道了植物中的增强子转录,初步阐释了增强子转录在小麦基因表达调控中的作用。相关研究近日发表于《基因组生物学》(Genome Biology)。 增强子是一种40

新研究揭示猪肌纤维类型分化及转化机制

7月1日,华南农业大学教授吴珍芳团队首次揭示了不同代谢类型猪骨骼肌的染色质空间构象及其介导的调控差异,通过整合表观基因组学与三维基因组学分析并结合分子实验,阐明了超级增强子调控肌纤维类型分化与转化的分子机制。相关成果发表于《自然-通讯》(Nature Communications)。研究对象及高通量

Nature子刊:鉴定增强子全新方法

  增强子是能够加强特定基因表达的DNA序列。日期,劳伦斯伯克利国家实验室(Berkeley Lab)的研究团队,开发了一个能在人类和其他哺乳动物基因组中鉴定基因增强子的新技术。文章于三月二十三日发表在Nature Methods杂志的网站上。   这一技术被称为SIF-seq(site-sp

增强子的特点作用

① 具有远距离效应。② 无方向性。③ 顺式调节。④ 无物种和基因的特异性。⑤ 具有组织特异性。⑥ 有相位性。⑦ 某些增强子可以应答外部信号。

增强子的特点作用

① 具有远距离效应。② 无方向性。③ 顺式调节。④ 无物种和基因的特异性。⑤ 具有组织特异性。⑥ 有相位性。⑦ 某些增强子可以应答外部信号。

增强子元件的定义

中文名称增强子元件英文名称enhancer element定  义存在于高等真核生物和各种病毒的基因组中的一种DNA序列。通常位于基因转录起始位点的上游,在与专一的转录因子结合后能提高该基因的转录水平。与启动子不同,单独的增强子元件不足以使基因表达。它们在两个方向和与启动子的任何距离处都能发挥作用。

增强子的基本结构

增强子是DNA上一小段可与蛋白质结合的区域,与蛋白质结合之后,基因的转录作用将会加强。增强子可能位于基因上游,也可能位于下游。且不一定接近所要作用的基因,这是因为染色质的缠绕结构,使序列上相隔很远的位置也有机会相互接触。

简述增强子的发现

  1981年Benerji在SV40DNA中发现一个140bp的序列,它能大大提高SV40DNA/兔β—血红蛋白融合基因的表达水平,这是发现的第一个增强子。它位于SV40早期基因的上游,由两个正向重复序列组成,每个长72 bp。发现的增强子多半是重复序列,一般长50bp,通常有一个8—12bp组成

增强子元件的定义

中文名称增强子元件英文名称enhancer element定  义存在于高等真核生物和各种病毒的基因组中的一种DNA序列。通常位于基因转录起始位点的上游,在与专一的转录因子结合后能提高该基因的转录水平。与启动子不同,单独的增强子元件不足以使基因表达。它们在两个方向和与启动子的任何距离处都能发挥作用。

Cell-Rep:科学家们鉴别出促进细胞发生癌变的关键机制

  当引导干细胞向体细胞转化的机制被正常关闭时,细胞就会发生癌变,识别阻碍这一过程的机制或有望帮助科学家们寻找新型的癌症研究靶点;近日,一项刊登在国际杂志Cell Reports上的研究报告中,来自普渡大学等机构的科学家们通过研究发现了能够使得干细胞增强子处于活性、启动或抑制状态的表观遗传学过程,尤

高通量解析骨质疏松非编码易感变异被揭示

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517668.shtm西安交通大学生命科学与技术学院杨铁林教授团队开发了一个增强子调控网络打分方法,鉴定了33个显著富集的转录因子,并发现这些转录因子显著富集到转录激活和骨代谢相关分子通路。近日该研究成果发

Cell子刊:谁在推动干细胞的分化

  美国凯斯西储大学的科学家们发现了多能干细胞分化的关键推手,这一突破性成果为干细胞的临床应用提供了宝贵的新线索,文章于六月五日发表在Cell旗下的Cell Stem Cell杂志上。  多能干细胞能够分化成为多种不同的细胞类型,具有修复机体损伤治疗疾病的巨大潜力。这项研究的两位资深作者,凯斯西储大

NAR:科学家阐明基因调节过程中的关键表观遗传开关机制

  2016年10月16日 讯 /生物谷BIOON/ --日前,来自普渡大学的研究人员通过研究阐明了一种关键的表观遗传学机制,其或许是一种关键因子来揭示基因如何被开启和关闭,相关研究刊登于国际杂志Nucleic Acids Research上。遗传学和表观遗传机制都能够调节人类机体基因的表达,外部环

出人意料的非编码RNA调控

  为了将六英尺多的DNA塞进细胞核里,细胞将基因组紧紧缠绕在组蛋白核心上形成核小体,并最终将其包装成紧密的染色质。DNA转录的时候需要打开核小体,而胚胎干细胞的染色质重塑复合体esBAF可以做到这一点。它不仅会打开需要转录的DNA,还暴露了促进转录的启动子和增强子。  基因组测序研究最近显示,增强

将基因转移至未分化ES细胞实验

分配96孔板上细胞用于冻存和体外分化试剂、试剂盒DMSOPBS胰酶溶液冻存液仪器、耗材平底 96 孔板移液器ES 生长培养基ES 分化培养基实验步骤1. 准备下列试剂和材料:DMSO(组织培养级)平底 96 孔板多道移液器无菌多道移液器容器ES 生长培养基ES 分化培养基无 Ca2+ 和 Mg2+ 

将基因转移至未分化ES细胞实验

ES细胞电穿孔 将ES克隆挑取到96孔板 分配96孔板上细胞用于冻存和体外分化 融化96孔板上的细胞             实验材料

将基因转移至未分化ES细胞实验

ES细胞电穿孔 将ES克隆挑取到96孔板 分配96孔板上细胞用于冻存和体外分化 融化96孔板上的细胞             实验材料

基因库的杂交与分化的介绍

  基因库的差异越大(或一般来说,物种间亲缘关系越远),物种间能成功进行杂交的可能性越小。但是,有些种群隔离时间虽久,如果基因库分化不大,也许仍然能成功交配。一些人相信存在自交或近交衰退,就必定会逻辑地相信存在所谓的“杂交优势”,历史悠久的农学育种正是为了寻找与利用一些所谓的对人类“有益的”优势性状