NatureBiotechnology:见光起舞—当光学碰撞CRIPSR/Cas9

日本的科学家们已经开发出一种光活化的Cas9核酸酶来控制CRISPR诱导的基因编辑,一个“开关”即可激活。这个光激活的Cas9核酸酶可以为研究者在RNA诱导的核酸酶研究上提供更大的空间和时间的控制。这篇研究在线发表在最新的Nature Biotechnology中。 来自加州大学的干细胞生物学家Paul Knoepfler评论这项研究时表示:“这是一种非常有效的新系统,通过光精确地控制基因编辑。任何先进的技术,能够增加转基因的精确度和控制都是一个重要的进步。我们做的就是其中之一。” 最近日本东京大学的化学家Moritoshi Sato和他的同事开发一种光学开关蛋白,称为“Magnets”(磁铁蛋白)。当光激活时,这些蛋白会因为静电相互作用而聚到一起。该团队还利用光活化技术,开发出光激活CRISPR转录体系,调节目标特定基因的表达。现在, Moritoshi Sato的研究小组更进一步,利用其磁蛋白创造了光活化Cas9核酸......阅读全文

“基因组编辑核酸酶”当选《自然》年度研究方法

    《自然—方法学》视频介绍“基因组编辑核酸酶”   《自然》杂志子刊《自然—方法学》在最新一期推出了2011年度研究方法专刊,评选出了本年度研究方法——基因组编辑核酸酶(Gene-editing nucleases)。专刊包括社论、新闻特写、评论、视频等内容;同时,还评出其他8个值得关注的研

Nature-Biotechnology:见光起舞—当光学碰撞CRIPSR/Cas9

  日本的科学家们已经开发出一种光活化的Cas9核酸酶来控制CRISPR诱导的基因编辑,一个“开关”即可激活。这个光激活的Cas9核酸酶可以为研究者在RNA诱导的核酸酶研究上提供更大的空间和时间的控制。这篇研究在线发表在最新的Nature Biotechnology中。  来自加州大学的干细胞生物学

Nature技术突破:光控CRISPRCas9系统

  发表在6月15日《自然生物技术》(Nature Biotechnology)杂志上的一项研究中,来自日本的研究人员报告称他们构建出了更好的CRISPR基因编辑系统:一种光激活的新型Cas9核酸酶使得研究人员能够在空间和时间上更好地控制RNA引导的核酸酶的活性。  加州大学戴维斯分校干细胞生物学家

类转录化学药物诱导型基因组编辑和转录激活系统

  生物学变化多受到高度动态的分子事件调控,为了更精确的理解并研究这些过程,应用条件性可诱导的技术手段是十分必要的。此前,得到广泛应用的药物诱导技术之一是通过配体结合激发雌激素受体蛋白(ER)从细胞质到细胞核的转运。在没有激素配体的情况下,ER与热激蛋白(hsp90)结合定位于细胞质中;一旦与配体结

基因编辑技术的的遗传学原理

基因编辑技术指能够让人类对目标基因进行定点“编辑”。基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂,诱导生物体通过非同源末端连接或同源重组来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。现在运用最多的基因编辑就是

基因编辑技术的的遗传学原理

基因编辑技术指能够让人类对目标基因进行定点“编辑”。基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂,诱导生物体通过非同源末端连接或同源重组来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。现在运用最多的基因编辑就是

中国学者综述:基因组编辑技术及其在昆虫研究中的应用

  科学通报,中国科学C辑:生命科学,这两份期刊均是由中国科学院和国家自然科学基金委员会共同主办的,我国学术期刊中的知名品牌,被国内外各主要检索系统收录,如国内的《中国科学论文与引文数据库》(CSTPCD)、《中国科学引文数据库》(CSCD)等;美国的SCI、CA、EI,英国的SA,日本的《科技文献

中科院化学所实现了细胞选择性基因编辑

CRISPR/Cas9是源自细菌获得性免疫系统的新一代基因编辑技术,在化学生物学、生物医学及基因治疗中具有潜在应用前景。CRISPR/Cas9技术使用引导RNA(single-guide RNA,sgRNA)识别靶标基因,并招募Cas9核酸酶对基因组进行切割、编辑等操作。然而,由于sgRNA识别基因

核酸酶保护实验

实验材料核酸酶试剂、试剂盒ATPCTPGTPMUTPEDTANaCl甲酰胺Tris-HClRNase ARNase T1RNasinDTTUTPT7RNA聚合酶DNaseⅠ饱和酚氯仿酵母tRNANaAc无水乙醇SDS蛋白酶K异丙醇丙烯酰胺亚甲双丙烯酰胺TBE尿素过硫酸胺TEMED仪器、耗材低温离心机

什么是核酸酶?

  核酸酶有DNase、RNase、核酸酶S1等,可水解相应的DNA和RNA,核酸酶S1可降解单链DNA和RNA,用量增大也可降解双链核酸。它可用于切去ds-cDNA合成中产生的发夹环。  末端转移酶在Mg 存在下,选择3′-OH端单链DNA为引物加成核苷酸,在Co 存在下,选择3′-OH端双链DN

核酸酶保护实验

实验材料 核酸酶试剂、试剂盒 ATPCTPGTPMUTPEDTANaCl甲酰胺Tris-HClRNase ARNase T1RNasinDTTUTPT7RNA聚合酶DNaseⅠ饱和酚氯仿酵母tRNANaAc无水乙醇SDS蛋白酶K异丙醇丙烯酰胺亚甲双丙烯酰胺TBE尿素过硫酸胺TEMED仪器、耗材 低温

核酸酶保护实验

            实验材料 核酸酶 试剂、试剂盒 ATP CTP GTP MUTP

中国生物工程杂志增设CRISPR专栏

  生物通“核心刊物”栏目创办于2002年,主旨在于向国内专业人士展示科研核心刊物,以及生命科学领域杂志每期重点内容,为读者呈现精彩纷呈的国内科研动向,和重大科研进展。目前包括《遗传》、《中国生物工程杂志》、《科学通报》等重点期刊,也欢迎生物类期刊联系合作(联系邮箱:journal@ebiotrad

2024年中国基因编辑技术发展现状及趋势分析-CRISPR/Cas优势明显

行业主要上市公司:金斯瑞(HK.1548)、凯赛生物(688065.SH)、华熙生物(688363.SH)、华恒生物(688639.SH)、川宁生物(301301.SZ)等本文核心数据:ZFNs技术;TALENs技术;CRISPR-Cas技术;基因编辑技术发展趋势——第一代基因编辑技术:ZFNs技术

-CRISPR明星技术2015开年精彩不停

  可以毫不夸张地说,CRISPR-Cas9已经风靡生物技术世界。  无论是在基础研究,还是临床研究方面,RNA引导性核酸酶使研究人员能够以单核苷酸分辨率编辑活细胞的基因组,这为生物技术不少领域带来了新希望。借助于CRISPR-Cas9基因编辑技术,科学家们能够调查一些基因和遗传突变在人类

新技术显著提高CRISPR系统精确性

  麻省总医院的研究人员开发了新一代的基因组编辑系统,可大大降低生成不必要的、脱靶基因突变的风险。在发表于《自然生物技术》(Nature Biotechnology)杂志上的一篇论文中,作者们报告称,一种新型的基于CRISPR的RNA引导性核酸酶技术通过利用两条引导RNAs,大大降低了在错误的位

凝血酶原激活激活系统介绍

  体内存在有内源性及外源性两种激活系统。前者是指心血管内膜受损,或血液流出体外通过与异常表面接触而激活因子Ⅻ(Hageman factor)。后者则由于组织损伤释放出因子Ⅲ,从而激活因子Ⅶ。两者都能启动一系列连锁反应,并在因子Ⅹ处汇合,最后都导致凝血酶原的激活及纤维蛋白的形成。

新一代CRISPRs有望成为2015年重磅技术

  当人们提到所谓的使能技术(enabling technologies),类似印刷机的发明,或者麻醉药的发现就会浮现在我们脑海中。而对于科学家来说,CRISPR-Cas9 系统就是这样一种系统。  这种细菌免疫系统能通过将病毒DNA中的短重复片段整合到细菌基因组中,来抵抗病毒。当细菌(或其后代)第

Nature-Methods:新一代CRISPRs有望成为2015年重磅技术

  当人们提到所谓的使能技术(enabling technologies),类似印刷机的发明,或者麻醉药的发现就会浮现在我们脑海中。而对于科学家来说,CRISPR-Cas9 系统就是这样一种系统。  这种细菌免疫系统能通过将病毒DNA中的短重复片段整合到细菌基因组中,来抵抗病毒。

Cell子刊综述:多能干细胞的基因组编辑

  具有敲除或突变等位基因的人类多能干细胞(hPSCs),可以通过定制设计的核酸酶产生。转录激活因子样效应物核酸酶(TALENs)和成簇规律间隔短回文重复序列(CRISPR)-Cas9核酸酶,是编辑hPSC基因组最常用的技术。 1月6日,Cell子刊《Cell Stem Cell》在线发表了来自哈佛

外切核酸酶的种类

20世纪70年代,在细菌中陆续发现了一类核酸内切酶,能专一性地识别并水解双链DNA上的特异核苷酸顺序,称为限制性核酸内切酶(restrictionendonuclease,简称限制酶)。当外源DNA侵入细菌后,限制性内切酶可将其水解切成片段,从而限制了外源DNA在细菌细胞内的表达,而细菌本身的DNA

外切核酸酶的种类

  为限制性核酸内切酶(restrictionendonuclease,简称限制酶)。当外源DNA侵入细菌后,限制性内切酶可将其水解切成片段,从而限制了外源DNA在细菌细胞内的表达,而细菌本身的DNA由于在该特异核苷酸顺序处被甲基化酶修饰,不被水解,从而得到保护。  限制性核酸内切酶的研究和应用发展

外切核酸酶的介绍

  一、核酸外切酶  有些核酸酶能从DNA或RNA链的一端逐个水解下单核苷酸,所以称为核酸外切酶。只作用于DNA的核酸外切酶称为脱氧核糖核酸外切酶,只作用于RNA的核酸外切酶称为核糖核酸外切酶;也有一些核酸外切酶可以作用于DNA或RNA。核酸外切酶从3′端开始逐个水解核苷酸,称为3′→5′外切酶,例

RNA-SI-核酸酶作图

            实验材料 [γ-32P」ATP 合适的寡核苷酸 DNA 模板l 10XdNTP 混合物 KLenow 片段 合适的限 制性内切核酸酶

核酸酶的发展历史

20世纪70年代,在细菌中陆续发现了一类核酸内切酶,能专一性地识别并水解双链DNA上的特异核苷酸顺序,称为限制性核酸内切酶(restriction endonuclease,简称限制酶)。当外源DNA侵入细菌后,限制性内切酶可将其水解切成片段,从而限制了外源DNA在细菌细胞内的表达,而细菌本身的DN

RNA-SI-核酸酶作图

实验材料 [γ-32P」ATP合适的寡核苷酸DNA 模板l10XdNTP 混合物KLenow 片段合适的限 制性内切核酸酶X 射线胶片洗脱缓冲液tRNA 石蜡油S1 核酸酶试剂、试剂盒 10X 激酶缓冲液PNK10X 复性缓冲液6% 聚丙烯酰胺 8mol L 尿素溶液 (溶于 0.5XTBE) 及甲

核酸酶的作用机制

不同来源的核酸酶,其专一性、作用方式都有所不同。有些核酸酶只能作用于RNA,称为核糖核酸酶(RNase),有些核酸酶只能作用于DNA,称为脱氧核糖核酸酶(DNase),有些核酸酶专一性较低,既能作用于RNA也能作用于DNA,因此统称为核酸酶(nuclease)。根据核酸酶作用的位置不同,又可将核酸酶

核酸酶的分类介绍

核酸外切酶有些核酸酶能从DNA或RNA链的一端逐个水解下单核苷酸,所以称为核酸外切酶。只作用于DNA的核酸外切酶称为脱氧核糖核酸外切酶,只作用于RNA的核酸外切酶称为核糖核酸外切酶;也有一些核酸外切酶可以作用于DNA或RNA。核酸外切酶从3′端开始逐个水解核苷酸,称为3′→5′外切酶,例如,蛇毒磷酸

兆核酸酶的定义

中文名称兆核酸酶英文名称meganuclease定  义一类核酸酶内切酶,其识别序列较长,位点极为罕见,切割产生的片段很大,是定位基因操作的工具。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

核酸酶的主要种类

核酸外切酶有些核酸酶能从DNA或RNA链的一端逐个水解下单核苷酸,所以称为核酸外切酶。只作用于DNA的核酸外切酶称为脱氧核糖核酸外切酶,只作用于RNA的核酸外切酶称为核糖核酸外切酶;也有一些核酸外切酶可以作用于DNA或RNA。核酸外切酶从3′端开始逐个水解核苷酸,称为3′→5′外切酶,例如,蛇毒磷酸