RNA干扰的分子机制首次被发现

日本东京大学官网近日宣布,东京大学和京都大学研究人员发现了核糖核酸干扰(RNAi)的分子机制。所谓核糖核酸干扰,就是单分子RNA分裂时出现的某种蛋白质合成受到抑制的现象。 由于借助RNAi可以关闭特定基因的表达,科学家一直期待RNAi现象在医疗领域得到应用。在先前研究中,科学家已经发现RNAi由RNA诱导沉默复合体(RISC)来调节,且RISC的中心包含一个小RNA和一个阿尔古蛋白,它们能够使目标RNA进行分裂。然而,科学界一直没有找到直接监测RNAi反应的工具,因此RNAi的分子机制也一直是个谜。 现在日本研究人员首次设计出一种单分子成像分析方法,可以在试管中实时观测RISC使目标RNA分裂的过程。他们通过观测发现,RISC中的小RNA包含两部分,其中一部分很快“绑定”到要分裂的目标RNA上,另一部分则负责“校对”是不是选择了正确的目标RNA。 这一突破性结果揭示了RISC的作用机理,或将加速科学界对RNAi的研究应......阅读全文

RNA干扰的分子机制首次被发现

  日本东京大学官网近日宣布,东京大学和京都大学研究人员发现了核糖核酸干扰(RNAi)的分子机制。所谓核糖核酸干扰,就是单分子RNA分裂时出现的某种蛋白质合成受到抑制的现象。  由于借助RNAi可以关闭特定基因的表达,科学家一直期待RNAi现象在医疗领域得到应用。在先前研究中,科学家已经发现RNAi

日本东京大学官网宣布RNA干扰的分子机制首次被发现

  日本东京大学官网近日宣布,东京大学和京都大学研究人员发现了核糖核酸干扰(RNAi)的分子机制。所谓核糖核酸干扰,就是单分子RNA分裂时出现的某种蛋白质合成受到抑制的现象。  由于借助RNAi可以关闭特定基因的表达,科学家一直期待RNAi现象在医疗领域得到应用。在先前研究中,科学家已经发现RNAi

RNAi(RNA干扰)的分子机制

通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dic

RNA干扰的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

RNA干扰的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

RNA干扰的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

RNA干扰的发现背景

RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN

RNA干扰技术的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

关于RNA干扰的发现介绍

  RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义

RNA干扰技术的发现历史

RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN

RNA干扰的发现与研究

RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN

关于RNA干扰的作用机制介绍

  病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞

Nature|牛磺酸抗肥胖的分子机制首次被揭秘

  牛磺酸是一种有条件必需的微量营养素,也是人体中含量最丰富的氨基酸之一。在内源性牛磺酸代谢中,专门的酶参与了半胱氨酸对牛磺酸的生物合成以及次级牛磺酸代谢物的下游代谢。牛磺酸代谢物之一是N -乙酰牛磺酸。N-乙酰牛磺酸水平受改变牛磺酸或乙酸通量的刺激动态调节,包括耐力运动、饮食中补充牛磺酸和饮酒。迄

关于小干扰RNA的发现介绍

  siRNA最早是由英国的大卫·包孔博(David Baulcombe)团队发现,是植物中的转录后基因沉默(post-transcriptional gene silencing;PTGS)现象的一部分,其研究结果发表于《科学》。2001年,汤玛士·涂许尔(Thomas Tuschl)团队发现合成

RNA干扰机制的主要特点及优势

1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实

分子细胞卓越中心等发现RNA互补抑制Cas13活性的分子机制

  近日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员杨荟研究组、美国纪念斯隆凯特琳癌症中心教授Dinshaw J. Patel研究组和分子细胞卓越中心研究员丁建平研究组合作,在Molecular Cell上,在线发表了题为Structural basis for self

苎麻驯化机制被首次揭开

  田间生长的中饲苎1号(左)和青叶苎麻。刘头明供图  中饲苎1号(左)和青叶苎麻。刘头明供图  从一根茎中剥取的纤维,左为中饲苎1号,右为青叶苎麻。刘头明供图   苎麻基因组特征 刘头明供图  近日,中国农业科学院麻类研究所联合有关单位开展野生和栽培苎麻基因组比较及群体进化分析,首次系统揭示了苎麻

调节细胞衰老的RNA分子发现

美国得克萨斯大学西南医学中心科学家发现了一种新的衰老调节因子SNORA13。当这种非编码RNA被抑制时,细胞衰老过程显著减缓,表明它可能是治疗与衰老相关疾病的潜在靶点。研究团队指出,这一发现有望为神经退行性疾病、心血管疾病和癌症等与衰老密切相关的疾病提供新的干预手段,也有望为治疗核糖体病开辟新途径。

调节细胞衰老的RNA分子发现

  美国得克萨斯大学西南医学中心科学家发现了一种新的衰老调节因子SNORA13。当这种非编码RNA被抑制时,细胞衰老过程显著减缓,表明它可能是治疗与衰老相关疾病的潜在靶点。研究团队指出,这一发现有望为神经退行性疾病、心血管疾病和癌症等与衰老密切相关的疾病提供新的干预手段,也有望为治疗核糖体病开辟新途

科研人员首次发现G蛋白偶联受体分子识别机制

中科院上海药物研究所蒋华良课题组和王明伟课题组与美国、荷兰、丹麦等国科学家合作,提出了G蛋白偶联受体(GPCR)胞外段与跨膜区的动态变化模式,发现了该受体存在“开放”和“关闭”两种分子构象,从而为其本身以及其他B型G蛋白偶联受体的全长结构解析、功能研究和药物发现奠定了基础。相关研究7

科学家发现调节干扰素基因刺激因子降解的分子机制

  干扰素基因刺激因子(STING)是一种内质网跨膜蛋白,当胞质中存在异常DNA信号后,可在环鸟苷酸-腺苷酸介导下激活I型干扰素反应,并通过溶酶体降解,但STING降解和失活的分子机制尚未完全阐明。近期,日本东北大学与东京大学等单位的一项联合研究发现,STING通过一种名为内吞体分选转运复合体(ES

RNA干扰的简介

  RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。

RNA干扰的概念

RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。基因沉默,主要有转录前水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修

RNA干扰的概念

RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。基因沉默,主要有转录前水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修

RNA干扰的特点

1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实

RNA干扰的定义

RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。

学者首次发现植物环状RNA编码蛋白

华南农业大学植物保护学院周国辉教授/杨新副研究员团队在国家自然科学基金等项目的资助下,首次发现植物环状RNA编码多肽的功能,并揭示该多肽赋予水稻对多种病原物的广谱抗性。2月25日,相关成果发表于《新植物学家》(New Phytologist)。水稻条纹花叶病毒的感染促进水稻植株中circ-WRKY9

RNA干扰技术(RNA-interference,RNAi)

1995年,康乃尔大学的Su Guo博士在试图阻断秀丽新小杆线虫(C. elegans)中的par-1基因时,发现了一个意想不到的现象。她们本是利用反义RNA技术特异性地阻断上述基因的表达,而同时在对照实验中给线虫注射正义RNA(sense RNA)以期观察到基因表达的增强。但得到的结果

PNAS首次揭秘全身麻醉分子机制

  对于神秘的无意识神经科学,科学家们知之甚少,近期的一项研究也许能令我们更接近于真相――通过嵌入人类患者大脑中的电极,记录下常用全身麻醉精确瞬间的脑电波,研究人员发现了从快速密集的大脑活动,向缓慢不协调脑波转变的开启神经活动。这一研究成果公布在10月5日的《美国国家科学院院刊》(PNAS)杂志上。

首次发现人类外周神经系统发育的关键分子机制

  近日,来自Geisinger's Sigfried and Janet Weis研究中心的研究者通过研究发现了人类外周神经系统发育的分子机制,相关研究刊登于国际杂志Nature Communications上,研究结果或为那些遭受遗传性神经病的患者提供帮助和治疗希望。   在文中,研究