高绍荣实验室《Nature》发文揭示表观遗传学研究重大突破
9月15日,同济大学高绍荣实验室在《Nature》杂志在线发表题为 “Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos” 的文章。首次从全基因组水平上揭示了小鼠植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的(broad)H3K4me3修饰在植入前胚胎发育过程中对基因表达调控发挥重要作用。 随着精卵结合的发生,两种终末分化的生殖细胞的结合形成具有全能性的受精卵。随后,父源和母源的基因组要进行广泛的表观遗传重塑以适应胚胎发育的需要。这些表观修饰的变化是胚胎基因组激活及第一次细胞谱系分化的关键。组蛋白的转录后修饰直接调控了基因表达的激活和沉默。早期的研究中,利用抗体免疫荧光染色的方法发现,大部分的组蛋白修饰在植入前胚胎的发育过程中都发生了明显的变化。而一些调节组蛋白修饰......阅读全文
神经胶质胚胎发育
大部分的胶质细胞自发育中胚胎的外胚层组织衍生而来,特别是神经管及神经脊;唯一例外者为自造血干细胞衍生而来的小胶质细胞。在成人的身体中,小胶质细胞为可自我更新的一个族群,与中枢神经系统受损时会渗入的巨噬细胞及单核细胞有明显不同。 在中枢神经系统,胶质细胞发育自神经管的脑室区(ventricular
翘首远望!中国细胞生物学学会2021学术会隆重召开
分析测试百科网讯 2021年4月14日,中国细胞生物学学会2021年全国学术大会在重庆悦来国际会议中心召开。大会吸引力来自国内高校、医院及科研院所、企业技术和研发人员2000余人参加。本届大会以大会特邀报告、分会场报告、卫星报告和墙报交流等形式展开。分析测试百科网作为本次会议的合作媒体,为大会进
Nature胚胎发育研究:重建人体发育时间
京都大学(Kyoto University)的研究人员利用诱导多能干细胞(iPSC)重构了人体“分节时钟segmentation clock”,这是胚胎发育研究的重点。 这一成果公布在4月1日的Nature杂志上 从受精卵的第一个部分开始,一个复杂的蛋白质和基因网络相互作用,构建形成了我们器
Cell发现表观遗传学肥胖开关
世界就是这么不公平,有些人喝凉水都发胖,有些人怎么吃也胖不了。近年来科学家们发现,个体的肥胖倾向是由基因决定的。然而Cell杂志发表的一项最新研究表明,表观遗传学调控也在其中起到了关键作用。 Max Planck研究所的J. Andrew Pospisilik领导团队对遗传背景完全相同的小鼠和
坚持锻炼的表观遗传学意义
众所周知,体育锻炼能够改善包括代谢、肺活量在内的多项身体机能。那么体育锻炼是怎样在分子水平上施加影响的呢? 人们发现,锻炼能促进肌肉重塑,改变肌肉的纤维结构和蛋白组成。“坚持体育锻炼对健康很有帮助,能够防治一系列常见疾病,比如心血管疾病和二型糖尿病。理解锻炼有益健康的具体机制,可以帮助我们进一
Science:表观遗传学的“神秘花园”
许多研究者都在探寻各种复杂性状背后的遗传学基础。然而,大家往往忽视了天然表观遗传学变化为表型带来的多样性。表观遗传学突变发生在DNA序列之外,将其与DNA序列突变区分开是一项富有挑战性的工作。 在本期Science杂志上Cortijo等人向人们展示,表观等位基因( epialleles
Cancer-Cell专题:癌症表观遗传学
癌症中的基因调控与反调控一直是人们关注的热点,现在这一领域已经取得了很大的进展。Cell旗下的Cancer Cell杂志本月特别推出专题,推荐了四篇有代表性的癌症表观遗传学文章。 Vulnerabilities of Mutant SWI/SNF Complexes in Cancer 癌症
颠覆传统认知,表观遗传学之谜
尽管大多数生物体都是利用基因组上的甲基标记来监控基因表达,淡水原生动物Oxytricha trifallax却利用这些标记踢走了垃圾DNA(95%的基因组序列)。这一研究发现驳斥了以往研究做出的通常携带四个细胞核的单细胞纤毛虫无甲基化DNA的结论。 论文的第一作者、普林斯顿大学的博士后
胚胎发育的基本过程
胚胎发育一、胚胎发育过程(蛙的受精卵发育)二、特征⒈卵裂期细胞数量不断增加,但胚胎的总体积并不增加,或有所缩小⒉桑椹胚时期及其以前的细胞,每一个细胞都具有发育成完整胚胎的潜能,属于全能细胞。当胚胎细胞数目达到32个左右时,胚胎形成致密的细胞团,形似桑葚,叫做桑葚胚(morula)。⒊囊胚中有一个含有
Nature-Methods发表单细胞重亚硫酸盐测序技术
Babraham研究所和Wellcome Trust Sanger研究所的科学家们开发了一个单细胞表观遗传学检测技术,并将其发表在七月二十日的Nature Methods杂志上。这一成果可以帮助人们解读,环境怎样影响人类的发育和遗传性状。 “表观遗传学标志”是指DNA上的化学或蛋白标签,它们在
北大汤富酬发表表观基因组新成果
表观遗传学修饰可以在不改变DNA序列的情况下调控基因的活性。基因表达在时间和空间上的表观遗传学调控,对于人类发育是至关重要的。近年来,表观基因组已经成为了生物医学领域的一大研究热点。 北京大学的研究团队对早期人类胚胎进行深入研究,获得了胎儿大脑、心脏和肝脏的表观基因组景观。这一成果发表在十二月
揭秘胚胎发育奥秘!为何发育中胚胎细胞彼此并不相同?
近日,一项刊登在国际杂志Molecular Cell上的研究报告中,来自纽约大学的科学家们通过研究阐明了在胚胎发育(embryogenesis)过程中细胞变得彼此不同的分子机制,相关研究结果或能帮助阐明胚胎发育的遗传规律,同时也能帮助理解疾病发生和出生缺陷的原因。图片来源:commons.wik
中国学者CellRes:iPS研究新突破
来自中科院广州生物医药与健康研究院,浙江大学,深圳华大基因研究所等多处国内研究机构组成的研究组获得了诱导多能干细胞iPSCs研究的最新突破性机制:成功培养出了四头iPS克隆猪。这是首次在世界上获得成活的iPS克隆猪,有助于在大动物上应用iPS技术的发展。相关成果以letter的形式公布在Cell
中科院Cell发表表观遗传突破性发现
来自中科院北京基因研究所的研究人员在斑马鱼实验中证实,早期胚胎过程中维持了精子而非卵母细胞的DNA甲基化组(Methylome)。这一突破性的研究发现以封面文章形式发表在5月9日的《细胞》(Cell)杂志上。 来自中科院北京基因研究所的刘江(Jiang Liu)博士和慈维敏(Weimin
Science:人出生时自带“出厂说明书”
人体中至少存在250种不同类型的细胞。它们虽然携带顺序完全相同的DNA碱基序列,但肝脏细胞和神经细胞咋就看起来不太一样呢? 造成这种差异的原因是表观遗传学程序。表观遗传学修饰能标记DNA的特定区域,吸引或驱赶能激活基因的蛋白质。每一类细胞都有一套专属的基因表达激活模式。与固定的DNA遗传代码不同
人工胚胎高通量方式揭示早期胚胎的发育机制
美国索尔克(SALK)生物学研究所Belmonte课题组、德克萨斯大学西南医学中心吴军课题组及北京大学第三医院于洋课题组等在Cell杂志发表题为“Generation of blastocyst-like structures from mouse embryonic and adult ce
表观遗传学热点酶的作用机制
加州大学圣芭芭拉分校的研究人员发现大肠杆菌的Dam酶在DNA上移动进行修饰时会发生“跳跃”,并对其物理特性和行为进行了分析,这一研究成果能为生物医学研究和其他科学应用提供帮助。该文章发表在Journal of Biological Chemistry杂志上。 大肠杆菌的适应机制使其能依
JCB:“流放”DNA的表观遗传学修饰
皮肤细胞在发挥作用时启动的基因与肝细胞完全不同,而其他基因需要保持关闭。将基因“流放”到细胞核边缘,是能够一举关闭大量基因的重要途径。Johns Hopkins大学的一项新研究揭示了DNA被发配到细胞核边疆的具体机制,这一过程对于控制基因表达和决定细胞命运至关重要。相关论文发表在近期的Journ
表观遗传学有助解释妊娠高血压
弗吉尼亚联邦大学(VCU)医学院的研究者发现,一种关键酶的基因表达变化可能会导致有先兆子痫的孕妇出现高血压,并使她们形成血栓的易感性增加。这些结果可为孕妇高血压和血栓形成的最佳治疗方法提供线索,高血压和血栓形成可能会阻断孕妇内脏器官的血流,并且导致器官衰竭。 研究者一直致力于从分子层面
Nature报道表观遗传学新发现
日前,芝加哥大学的科学家们在Nature上发表最新的研究成果。这项研究揭示了N6-甲基腺苷(N6-methyladenosine,m6A)调控RNA-蛋白质相互作用的一个未知机制。 RNA结合蛋白通过与单链RNA结合基序(RNA binding motif,RBMs)1、2、3的结合来控制细胞
PNAS首次评估表观遗传学突变率
Groningen大学的科学家们在重要模式生物拟南芥中,精确评估了表观遗传学标志出现或消失的频率,有助于深入理解表观遗传学改变在植物进化中的重要性。这项研究发表在五月十一日的美国国家科学院院刊PNAS杂志上。 表观遗传学修饰可以在不改变DNA序列的情况下影响基因的活性。大多数动物(包括人类)的
Nature综述:表观遗传学预测癌症弱点
由Bellvitge生物医学研究协会癌症表观遗传与生物学研究组Manel Esteller领导的研究组,发表题为“DNA methylation profiling in the clinic: applications and challenges”的综述文章,概况了近期在应用表观遗传
Nature:癌症与表观遗传学重编程
延胡索酸(fumarate)是细胞三羧酸循环的一种中间产物。它天然存在于蔬菜水果中,也被用作调味的食物添加剂。Nature杂志发表的一项最新研究表明,代谢物延胡索酸过多会造成表观遗传学重编程,进而推动癌症发展。 遗传性平滑肌瘤病和肾细胞癌(HLRC)是一种罕见的人类癌症,会引起皮肤肿瘤和肾癌。
Nature:遏制哮喘的表观遗传学酶
研究人员发现重编程小鼠体内促哮喘的免疫细胞可以减少气道损伤和炎症,并有可能促成哮喘患者的新治疗。 研究人员能够重编程的促哮喘细胞是一种称为Th2细胞的免疫细胞,他们确定了一种可以修饰这些细胞DNA的酶。该酶可作为开发过量Th2细胞导致的慢性炎症疾病,尤其是过敏性哮喘的新疗法的一个靶点。相关
PerkinElmer发布表观遗传学和NGS新品
在上周举行的实验室自动化和筛查学会(SLAS)第二届年会上,PerkinElmer公司展示了一系列新产品,包括表观遗传学生化工具箱、JANUS® NGS Express™液体处理工作站和Sciclone® NGSx Workstation™平台。 表观遗传学新品 表观遗传学生化工
表观遗传学关于DNA甲基化
表观遗传学是研究表观遗传变异的遗传学分支学科从目前的研究来看,X 染色体剂量补偿、DNA 甲基化、组蛋白密码、基因组印记、表观基因组学和人类表观基因组计划等问题都是表观遗传学研究的内容。其中甲基化是基因组DNA 的一种主要表观遗传修饰形式,是调节基因组功能的重要手段。在脊椎动物中,CpG二核
清华团队Nature、Cell子刊连发多项表观遗传学成果
表观遗传学修饰可以在不改变DNA序列的情况下调控基因的活性,对于人类发育和人类疾病有深远的意义。组蛋白修饰是一种重要的表观遗传学修饰,包括甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化等等。 组蛋白修饰可以调控许多关键的细胞过程。不过,人们一直不清楚组蛋白的这些标签是否能从哺乳动物生殖细胞传
核移植胚胎干细胞的印迹基因甲基化研究
核移植来源的胚胎干细胞(NTES cells)在以干细胞为基础的细胞治疗中扮演着非常重要的角色,得到全能性良好且表观遗传修饰正常的核移植胚胎干细胞是解决治疗性克隆安全问题的重要前提。DNA甲基化修饰在基因表达和印迹基因的表达中起非常重要的作用,两步法克隆可能存在的不完全重编程问题很可能存在于印
胚胎发育之谜?刘江揭开面纱
DNA甲基化是一种重要的表观遗传修饰。以高等动物为例,个体从受精卵发育成成体的过程中,DNA甲基化图谱都是动态变化的,会调控不同的细胞往不同的方向分化。因此,建立DNA甲基化图谱对理解生殖细胞形成和胚胎发育至关重要。刘江(中)团队合影 在基金委“细胞编程和重编程的表观遗传机制”重大研究计划中,
胚胎发育后成说的概念
后成说(也称渐成说)是关于胚胎发育的一种假说。认为无论卵细胞还是精子中都不存在生物体发育的雏形,生物体的各种组织和器官都是在个体发育过程中逐渐形成的。在授精过程发现(于十九世纪后期)之前,人类对生物个体发育的认识就是两种截然不同观点—预成论(先成论)与渐成论(后成论)之争的历史。