高绍荣实验室《Nature》发文揭示表观遗传学研究重大突破

9月15日,同济大学高绍荣实验室在《Nature》杂志在线发表题为 “Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos” 的文章。首次从全基因组水平上揭示了小鼠植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的(broad)H3K4me3修饰在植入前胚胎发育过程中对基因表达调控发挥重要作用。 随着精卵结合的发生,两种终末分化的生殖细胞的结合形成具有全能性的受精卵。随后,父源和母源的基因组要进行广泛的表观遗传重塑以适应胚胎发育的需要。这些表观修饰的变化是胚胎基因组激活及第一次细胞谱系分化的关键。组蛋白的转录后修饰直接调控了基因表达的激活和沉默。早期的研究中,利用抗体免疫荧光染色的方法发现,大部分的组蛋白修饰在植入前胚胎的发育过程中都发生了明显的变化。而一些调节组蛋白修饰......阅读全文

探讨胚胎发育的调控机制

发育生物学是生命科学的前沿领域,在最近几十年里,对发育生物学的某些基础领域有了较为深入的认识。但是发育生物学领域依然存在许多未解的问题,例如,一个单细胞——受精卵细胞是如何发育成复杂的组织、器官、系统乃至完整的有机个体。生命最大的奥秘就是探讨一个受精卵如何发育成复杂的生物体,但是,由于受精卵植入子宫

研究证实精子指导胚胎早期发育

中科院北京基因组所研究员刘江及其研究团队,以斑马鱼为模型,发现子代会选择性地继承父本而抛弃母本的DNA甲基化图谱,从而揭示了精子对遗传使命的新贡献,有助于揭开从受精卵到个体发育的奥秘。《细胞》杂志日前以封面文章的形式特别报道了该发现。  生命得以延续的基础是遗传,父母的DNA序列信息会遗传

胚胎发育先成说的概念

先成说(也称预成说):关于胚胎发育的一种假说,认为卵细胞或是精子中存在生物体发育的雏形,即生物体的各种组织和器官。十八世纪预成论vs渐成论之争,随着细胞理论的出现、哺乳动物卵子的发现以及授精过程的显微观察而尘埃落定—先成说被彻底抛弃。

Science树立新观念:能遗传的不仅仅是基因

  我们不仅仅是基因的总和。由饮食、疾病或生活方式等环境因素调节的表观遗传机制可以通过调节基因的开关来调节DNA。长久以来人们一直争论不休的是:如果表观遗传修饰在整个生命中积累,它是否可以跨越世代的边界,遗传给下一代。  现在,德国Max Planck研究所的免疫生物学和表观遗传学研究人员获得有力的

研究发现胚胎可接收亲本特有的信息层

  最近,旧金山州立大学的研究人员发现,解释一个新胚胎遗传密码的信息,根据它来自于父亲还是母亲而有所不同。  研究人员在2014年10月9日《PLOS Genetics》发表的一篇文章中,详细阐述了精子和卵子传递成功繁殖所需要的信息的多层过程。尽管一层是被转移的DNA密码,这项新研究发现了不是由DN

早期胚胎发育中的单胚胎细胞基因表达(一)

Single-embryo Gene Expression for Early Embryo DevelopmentMylene Yao, M.D. Assistant ProfessorDept. of Obstetrics and Gynecology Stanford UniversityMy

早期胚胎发育中的单胚胎细胞基因表达(二)

“We picked 42 genes to validate on the BioMark system,” Dr. Yao said. “We picked them to represent different functional categories.”“We used the F

中科院参与发表Nature表观遗传学新成果

  在动植物的发育过程中,配子和胚胎会发生表观遗传学状态的重编程,这是正确发育必不可少的一步。  植物的生殖细胞来自于花的体细胞组织,需要消除植物发育或应答外界刺激时积累的染色质修饰。如果这一过程不能有效进行,那么上一代的表观遗传学状态就会错误的遗传下去。不过在绝大多数情况下,上述表观遗传学修饰都能

DNA羟化酶Tet1可取代外源Oct4促进体细胞重编程

  2013年4月5日,北京生命科学研究所高绍荣博士实验室首次发现Tet1和5hmC在iPS细胞诱导过程中参与内源Oct4基因的去甲基化和激活,并且进一步证明Tet1可以取代外源Oct4实现安全高效的体细胞重编程。相关研究论文发表在近期出版的《Cell Stem Cell》杂志上。该文章被选为本

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

如何读懂胚胎植入前遗传学诊断?

  随着多种生物学工具的飞速发展,胚胎植入前遗传学诊断(Preimplantation Genetic Diagnosis,PGD)可以说迎来了一个新时代,同时由于现代社会接近11%的不孕不育比率,PGD的需求也越来越多,如何读懂这一辅助生育技术,了解试管婴儿操作过程中最为关键的一步,不再只

“遗传学进步与人口健康高峰论坛”在昆明召开

为了交流人类与医学遗传学领域的新成果、新进展,中国“遗传学进步与人口健康高峰论坛”于2007年11月14—17日在昆明召开,近400名医学遗传学领域的专家学者参加了会议,包括曾溢滔、张亚平、贺林、杨焕明等。开幕式上还进行了“昆明-北京-哈尔滨‘中国不同民族永生细胞库’揭牌仪式”。 这次大会共收到学术

厦门大学PNAS表观遗传学新文章

  来自厦门大学、加州大学圣地亚哥分校的研究人员证实,热休克蛋白HSP70精氨酸甲基化调控了维甲酸介导的RARβ2基因激活。这项研究发布在6月16日的《美国国家科学院院刊》(PNAS)上。  厦门大学药学院的刘文(Wen Liu)教授和加州大学圣地亚哥分校的Michael G. Rosenfeld教

何川教授eLife最新表观遗传学成果

  7月2日,国际著名学术期刊《eLife》在线刊登了芝加哥大学何川教授(Chuan He)和俄亥俄州立大学Li Wu带领的一项研究成果,题为“N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protei

Science:表观遗传学实现行为重编程

  在佛罗里达木蚁中,大工蚁(majors)和小工蚁(minors)属于两个完全不同的阶级,它们的社会性行为存在很大差异。宾夕法尼亚大学领导的研究团队发现, 这些阶级特异性的社会行为并非一成不变,可以人为地进行表观遗传学重编程。这一重要成果发表在本期的Science杂志上。  表观遗传学修饰可以在不

饮食改变衰老过程的表观遗传学修饰

  表观遗传学修饰可以不改变基因编码,而影响基因的开启或关闭。研究人员对185位志愿者(84位男性和101位女性)的直肠组织切片进行了研究,发现人体内基因的表观遗传学修饰主要受衰老的驱动,不过日常饮食也会对表观遗传学修饰产生重要影响。该研究发表在十二月六日的Aging Cell杂志上。   研

厦门大学PNAS表观遗传学新文章

  来自厦门大学、加州大学圣地亚哥分校的研究人员证实,热休克蛋白HSP70精氨酸甲基化调控了维甲酸介导的RARβ2基因激活。这项研究发布在6月16日的《美国国家科学院院刊》(PNAS)上。  厦门大学药学院的刘文(Wen Liu)教授和加州大学圣地亚哥分校的Michael G. Rosenfeld教

表观遗传学变异或可解释慢性肾病

  由宾夕法尼亚大学佩雷尔曼医学院肾电解质和高血压部门的医学副教授、临床科学家Katalin Susztak博士带领的一项研究,试图阐明慢性肾病的分子根源和遗传素质,其研究成果发表在最近的Genome Biology杂志上。   在这项研究中,Susztak和她的共同通讯作者、来自阿尔伯特爱因

Cell:朊蛋白,表观遗传学的新层面

  朊蛋白prion总是与疯牛病和克-雅氏病等联系在一起,不过人们正逐渐意识到,朊蛋白在生物中也能够发挥正常的有益功能。   日前科学家们发现,朊蛋白能够使酵母从常规单细胞形态转变为多细胞协作形式,并由此在不利环境条件下增大酵母的生存几率。这种可遗传的改变不会影响酵母基因组,是一种表观遗传学现象。

美国女院士表观遗传学新成果

  TET(ten-eleven translocation)蛋白是生物体内存在的一种α-酮戊二酸(α-KG)和Fe2+依赖的双加氧酶,是DNA去甲基化过程中的一种重要的酶,对于维持干细胞的多能性有重要作用。多年来,科学家了解到,TET蛋白家族有肿瘤抑制因子的作用,但是,它们是如何抑制失控的癌细胞增

Science新闻:表观遗传学印记让基因“窒息”

  吸烟留下的可不仅仅是衣服和手指上的烟味,现在一项新研究提出了强有力的证据指出,吸烟能够通过表观遗传学修饰影响增加癌症发病风险的基因活性。这一发现,为研究者们提供了一个评估吸烟人群癌症风险的新工具。   我们DNA上的化学修饰可以影响基因的功能,决定基因的开启和关闭,这些化学修饰被称为表观遗传学

朱冰:表观遗传学过去,现在,未来

  由北京生命科学研究所朱冰研究组领衔完成的Science研究论文,揭示出染色质的紧密程度能调节组蛋白H3K27甲基化酶复合体PRC2的催化活性,从而影响基因转录,这有助于解析基因转录调控以及基因沉默的重要机制。为了更深入追踪这项研究的具体内容,生物通特联系了朱冰研究员,就几个方面请教了他。   

神经精神疾病的表观遗传学关联

  根据加州大学欧文分校的科学家报道,多巴胺信号的功能障碍,可深刻地改变大脑前额叶皮层中大约2000个基因的活性水平,可能是某些复杂神经精神疾病(如精神分裂症)的一个根本原因。  接收这种神经递质的脑细胞中基因活性的这种表观遗传学改变,首次表明多巴胺不足会影响前额叶皮层中调控的各种行为和生理功能。 

世界最大表观遗传学研究项目正式启动

  表观遗传学:主要探索细胞内随时发生的化学变化如何影响基因的活动。这些化学变化有些可能是随机的,有些可能与生活方式或者饮食有关,而这种影响可能持续多代。  记者从华大基因研究院获悉,作为人类基因组学研究中最具潜力的项目之一,全球最大的表观遗传学研究项目将于9月6日正式启动。  该项目将对

表观遗传学药物有望解决癌症治疗难题

  表观遗传学是一种调控基因表达的可逆途径,通过DNA和组蛋白的化学修饰,决定特定基因是否能得以表达。在癌症中,表观遗传学修饰的添加或删除,与肿瘤抑制基因的沉默或者癌基因的过表达有关。有研究显示,在标准的化疗流程之前先用表观遗传学药物处理癌细胞,可以增强这些细胞对抗癌药物的敏感性。这样的措施将大大有

表观遗传学研究揭示拉美人长寿之谜

  加州大学洛杉矶分校UCLA的研究人员首次证实,拉美人(Latinos)的衰老速度的确比其他民族的慢。这项研究发表在本期的Genome Biology杂志上,有望帮助科学家们找到适合所有人的抗衰老途径。  “尽管拉美人患糖尿病和其他疾病的比例较高,但他们的寿命比高加索人长。这被科学家们视为一种难以

表观遗传学开关控制基因节律性转录

  当夜晚降临,我们就会慢慢入睡,这是受昼夜节律circadian cycle影响的结果,我们的每个器官甚至基因中都存在这样的节律。   Salk研究所的科学家发现,表观遗传学修饰是使肝脏活性与昼夜节律同步的遗传学开关。这一发现能够帮助人们进一步了解高血糖、高胆固醇等健康威胁背后的机制,文章于近期

Nature-表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观