研究发现:视网膜内神经节细胞功能有别
俗话说“只看外表会上当”,对眼睛里的视网膜而言也同样如此。视网膜上的细胞虽然看起来相似,但种类功能各不相同。据美国物理学家组织网7月25日报道,美国约翰·霍普金斯大学和国家眼科研究院科学家发现,视网膜最内层一种名为ipRGCs的细胞在视觉成像中发挥重要作用,该功能细胞实际由两种分工不同的细胞亚群组成,一种细胞亚群负责身体周期节律,另一种细胞亚群负责瞳孔对光的反应。相关论文发表在最近出版的《自然》杂志上。 此前的研究认为,ipRGCs(内部感光视网膜神经节细胞)能表达黑视素,并调控着多种与光照相关的生理过程。破坏ipRGCs功能会导致昼夜生物钟功能丧失,使瞳孔对光反应混乱。 而研究人员最新发现,ipRGCs并非都一样,负责身体周期节律的细胞和瞳孔光反应的细胞,是截然不同的两种,每种只负责一项任务。根据它们表达Brn3b转录因子的方式不同,一种称为Brn3b-negative M1 ipRGCs,能刺激......阅读全文
哺乳动物视网膜中新神经细胞“现身”
美国犹他大学约翰·莫兰眼科中心科学家在最新一期美国《国家科学院院刊》上撰文指出,他们在哺乳动物的视网膜中发现了一种新的神经细胞,有助科学家们更好地理解中枢神经系统。 该研究负责人、犹他大学田宁(音译)博士解释说,在中枢神经系统中,存在着一个复杂的神经细胞回路以相互通信、传递感觉及运动信息,而所
视网膜神经细胞再生疗法或可治疗严重眼疾
复旦大学附属眼耳鼻喉科医院眼科研究院院长卢奕教授与加州大学圣地亚哥分校张康教授团队携手,阐述在应用视网膜神经细胞重编程、再生疗法用于治疗严重眼部疾病研究方面取得重大进展,最新一期国际权威顶级期刊《新英格兰医学杂志》( 《NEJM杂志》 )刊发综述,对这项研究成果作了重点介绍。视网膜对人类的视觉至
研究发现:视网膜内神经节细胞功能有别
俗话说“只看外表会上当”,对眼睛里的视网膜而言也同样如此。视网膜上的细胞虽然看起来相似,但种类功能各不相同。据美国物理学家组织网7月25日报道,美国约翰·霍普金斯大学和国家眼科研究院科学家发现,视网膜最内层一种名为ipRGCs的细胞在视觉成像中发挥重要作用,该功能细胞实际由两种分工
光反应的发现
直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么。1771年,英国科学家普利斯特里发现,将点燃的蜡烛与绿色植物一起放在一个密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠也不容易窒息而死。因此,他指出植物可以更新空气。
光反应的概念
光反应(light reaction)是指只发生在光照下,由光引起的反应。光反应发生在叶绿体的类囊体膜(光合膜)。光反应从光合色素吸收光能激发开始,经过水的光解,电子传递,最后是光能转化成化学能,以ATP和NADPH的形式贮存。
光反应的步骤
光反应包括两个步骤:(1)光能的吸收、传递和转换的过程——一通过原初反应完成。原初反应的基本单位是光合单位,由100多个天线色素和一个作用中心构成。其中作用中心由原初电子供体、反应中心色素分子(也称作用中心)、原初电子受体组成。其中反应中心色素分子具有光化学特性,其余天线色素分子仅具有光物理特性。其
光反应的过程步骤
光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电
光反应的发现历史
直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么。1771年,英国科学家普利斯特里发现,将点燃的蜡烛与绿色植物一起放在一个密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠也不容易窒息而死。因此,他指出植物可以更新空气。
光反应的过程步骤
光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电
眼病的再生疗法-光感受器是视网膜中的特殊神经细胞
美国研究人员14日在《自然》杂志线上版发表论文称,他们首次将哺乳动物视网膜中的Müller胶质细胞转变为杆状光感受器,成功逆转了小鼠的先天性失明。他们称,这一研究成果将推动年龄相关黄斑变性等眼病的再生疗法研究。 光感受器是视网膜中的一类特殊神经细胞,受到光刺激时会向大脑发出信号。在包括小鼠
光反应和暗反应的区别
反应阶段第一阶段第二阶段反应实质光能→化学能,释放同化CO2形成(CH2O)(酶促反应)反应时间短促,以微秒计较缓慢反应条件需色素、光、ADP、和酶不需色素和光,需多种酶反应场所在叶绿体内囊状结构薄膜上进行在叶绿体基质中进行物质转化(光反应)2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)
《科学》:植物光反应复杂机制得到揭示
植物利用光进行生长被很多人视为理所当然的事,实际上我们对于其中的机制所知并不多。美国科学家进行的一项最新研究,揭示了参与植物光反应蛋白的特殊生成机制。这一发现大大提高了人们对于植物光反应调节机制的认识。相关论文11月23日发表于《科学》(Science)杂志上。 图片说明:植物光反应过程非常复
细胞生物学词汇光反应
光反应(light reaction)是指只发生在光照下,由光引起的反应。光反应发生在叶绿体的类囊体膜(光合膜)。光反应从光合色素吸收光能激发开始,经过水的光解,电子传递,最后是光能转化成化学能,以ATP和NADPH的形式贮存。
药物鉴别法荧光反应鉴别法
荧光反应鉴别法常用的荧光发射形式有以下类型。(1)药物本身可在可见光下发射荧光。(2)药物溶液加硫酸使呈酸性后,在可见光下发射荧光,如苯并二氮杂类药物。(3)药物和溴反应后,在可见光下发射荧光。(4)药物和间苯二酚反应后,发射出荧光或药物经其他反应后发射荧光。
吖啶酯直接参与发光反应吗
直接参与。吖啶酯是直接参与发光反应的,直接化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,可直接标记抗原或抗体。
吖啶酯直接参与发光反应吗
直接参与。吖啶酯是直接参与发光反应的,直接化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,可直接标记抗原或抗体。
化学发光反应的发光类型介绍
化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以
化学发光反应要满足什么条件
化学发光反应要满足什么条件发光有两种,一种是由于温度达到条件而发光,一种是冷光,也就是是荧光.高于绝对零度的物体都会向周围空间发射电磁波,温度越高发射的电磁波的波长越短.当波长范围落在可见光范围内时就会发光.另外,高速运动的物体也会发射波长较短的电磁波.一般化学发光要么是温度的关系(大部分情况是燃烧
视神经乳头炎的检查介绍
对光反应 多为单侧,偶为双侧,主要症状是视力急剧减退。如果视力完全丧失,则瞳孔散大,直接对光反应消失,间接对光反应存在;如果视力部分存在,则对光反应不持久(瞳孔颤动)。 眼底检查 眼底检查:在发病初期,视乳头充血,边缘模糊,视网膜中央静脉扩张。当炎症高度发展时,视乳头水肿隆起,其高度一般不
光反应和暗反应的测量仪器
光合仪:气体交换原理,利用红外气体分析器(InfraRed Gas Analyzer IRGA)测量流经叶片前后CO2和H2O的浓度变化,分析叶片与环境发生的气体交换,用固定了多少CO2来表征光合作用的能力。常用的参数是净光合速率,蒸腾速率,气孔导度,胞间二氧化碳浓度等。气体交换是非常经典的光合
视神经乳头炎的诊断及检查
诊断 视神经乳头炎主要表现为严重的急性 中心视力障碍。数天内由正常视力骤降至数指光觉甚至无光觉。根据发病时的视力及眼底表现,结合出现中心暗点的特征性 视野缺损, 色觉异常,VEP等检查均有一定辅助诊断意义。 检查 对光反应 多为单侧,偶为双侧,主要症状是视力急剧减退。如果视力完全丧失,则
神经细胞分散培养
一、设备无菌操作设备。二、大型设备CO2培养箱恒温5%、10%CO2维持培养液中pH值倒置显微镜:用于每天观察贴壁细胞生长情况解剖显微镜,用于准确地取材常温冰箱:-4℃,用于保存各种培养液,解剖液和鼠尾胶低温冰箱:-20℃--80℃,用于储存血清酶,贵重物品和试剂电热干烤箱:用于消毒玻璃器皿高压消毒
关于神经细胞简介
虽然神经元形态与功能多种多样,但结构上大致都可分成细胞体(soma)和突起(neurite)两部分。突起又分树突(dendrite)和轴突(axon)两种。轴突往往很长,由细胞的轴丘(axon hillock)分出,其直径均匀,开始一段称为始段,离开胞体若干距离后始获得髓鞘,成为神经纤维,习惯上
解构视网膜
在抵达视锥细胞和视杆细胞之前,光线必须穿过整个视网膜的厚度,包括视网膜不同层次的神经元与细胞核。 人类眼睛会主动形成最优化的视觉效率,白天产生良好的色彩视角,夜间产生最高的敏感性。最近,科学家却发现视网膜细胞的连接方式似乎是“错误”的,在光抵达具有测光能力的视杆细胞和视锥细胞之前,它要先经过
光合作用光反应和暗反应的区别
两反应区别反应阶段光反应碳反应(暗反应)反应实质光能→化学能,释放同化CO2形成(CH2O)(酶促反应)反应时间短促,以微秒计较缓慢反应条件需色素、光、ADP、和酶不需色素和光,需多种酶反应场所在叶绿体内囊状结构薄膜上进行在叶绿体基质中进行物质转化(光反应)2H2O→4[H]+O2↑(在光和叶绿体中
氮气浓缩仪是光反应的阶段的链接仪器
叶绿体是植物细胞内重要、普遍的质体,它是进行光合作用的细胞器。叶绿体利用其叶绿素将光能转变为化学能,把CO2与水转变为糖。叶绿体是世界上成本低、创造物质财富多的生物工厂光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来
叶绿体基粒的光反应与电子传递介绍
P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。 2H 2O→O2 + 4H+ +
视网膜巨大裂孔伴视网膜脱离病例分析
视网膜巨大裂孔是指大于1/4眼球周径的视网膜裂孔,临床少见,约占全部视网膜脱离的0.5%左右,视网膜裂孔较小、单纯的孔源性视网膜脱离超声检查大多可以明确诊断,但裂孔较大,裂孔边缘视网膜翻卷后的超声表现明显异于单纯孔源性视网膜脱离的声像图表现,应引起临床医生及特检医生的注意,本院遇到一例巨大视网膜裂孔
ReNeuron视网膜祖细胞治疗视网膜色素变性
ReNeuron Group公司是细胞疗法开发领域的全球领导者,致力于利用其独特的干细胞技术开发“现成的(off-the-shelf)”干细胞疗法,而无需免疫抑制药物。该公司的先导临床候选疗法正开发用于治疗中风所致残疾以及致盲疾病视网膜色素变性(RP)。 近日,该公司在加拿大温哥华举行的第六届
J-Neurosci:细胞死亡后,视网膜会自我重组
根据发表于JNeurosci的一项对老鼠的研究,经过基因治疗后,视网膜可以自我重组,恢复正常的光反应。 失明通常是由杆状光感受器死亡引起的,杆状光感受器是视网膜中的一种细胞。图片来源:Wang et al., JNeurosci 2019 目前已经开发出来的治疗方法可以挽救濒死的视杆细胞,但