COA国际学术大会在京举行逾万骨科专家参加

来自全球46个国家和地区及80多个国际组织的逾万名骨科医师、专家学者等12月1日齐聚北京,参加中华医学会第十三届全国骨科学术会议暨第六届COA国际学术大会,探讨骨科相关专业热点难点问题,并围绕如何解决看病难、看病贵等问题献计献策。 作为中国最大的骨科年度会议,本次会议设立创伤、脊柱及脊柱微创、关节外科、关节镜、骨肿瘤、骨质疏松、足踝、骨科护理、小儿骨科和国际交流等20多个分会场,将举办专题演讲108场、外宾演讲52场、论文报告604人次。与会者将通过会议平台交流一年来国内外骨科领域所取得的最新研究成果和临床进展。 据了解,骨与关节疾病正影响世界各地数以百万计的人。骨质疏松、关节炎、腰背痛和意外创伤等疾患不仅影响患者生活质量,还大幅增加了政府医疗经费和社会负担。 本届会议主席、中华医学会骨科学分会主任委员、解放军总医院骨科专科医院院长王岩介绍,除了为与会者搭建学术交流平台外,本次会议还将发挥促进政府相关部门、骨......阅读全文

酮体生成的调节

1、饱食及饥饿的影响:饱食后,胰岛素分泌增加,脂解作用抑制、脂肪动员减少,进入肝的脂酸减少,因而酮体生成减少。饥饿时,胰高血糖素等脂解激素分泌增多,脂酸动员加强,血中游离脂酸浓度升高而使肝摄取游离脂酸增多,有利于脂酸β-氧化及酮体生成。2、肝细胞糖原含量及代谢的影响:进入肝细胞的游离脂酸主要有两条去

黄赞、张鹏课题组发现肝细胞癌发生新机制

11月30日,肝脏病领域期刊Journal of Hepatology(《欧洲肝脏研究学会会刊》)在线发表武汉大学生命科学学院教授黄赞与基础医学院研究员张鹏课题组最新研究成果,表明丙酰辅酶A(Pro-CoA)代谢减少增强代谢重编程促进肝细胞癌(HCC)发生。  论文题为“Decreasedpropi

关于脂类的生物合成介绍

  脂肪酸  脂肪酸的生物合成biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化

酮体的组成

酮体是肝脏脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮三者的统称。酮体具有较强的合成酮体的酶系,但缺乏利用酮体的酶系,饥饿时酮体是包括脑在内的许多组织的燃料,可占脑能量来源的25%-75%,具有重要的生理意义。酮体合成酮体在肝细胞的线粒体中合成。合成原料为脂肪酸β-氧化产生的乙酰CoA.肝细

脂肪酸合成的起始原料

脂肪酸合成的起始原料是乙酰coa,它主要来自糖酵解产物丙酮酸,脂肪酸的合成是在胞液中。先说说饱和脂肪酸的合成:1.乙酰辅酶a的转运:脂肪酸的合成是在胞液中,而乙酰coa是在线粒体内,它们不能穿过线粒体内膜,需通过转运机制进入胞液。三羧酸循环中的柠檬酸可穿过线粒体膜进入胞液,然后在柠檬酸裂解酶的作用下

酮体的合成方法及步骤

在肝脏线粒体中脂肪酸一旦降解,生成的乙酰CoA可以有几种代谢结果。最主要的当然是进入柠檬酸循环及进一步的电子传递系统,最终完全氧化为CO2及H2O;其二是作为类固醇的前体,生成胆固醇,它在胆固醇生物合成中是起始化合物;其三是扮演脂肪酸合成前体的角色:其四是转化为乙酰乙酸、D-β-羟丁酸和丙酮,这三个

胴体的利用方法

肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。

酮体的的应用方式

肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。

酮体的利用

肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。

酮体的利用

肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。

脂肪酸的激素的调节介绍

  胰岛素、胰高血糖素、肾上腺素及生长素等均参与对脂肪酸合成的调节。  胰岛素能诱导乙酰CoA羧化酶、脂肪酸合成酶及柠檬酸裂解酶的合成,从而促进脂肪酸的合成。此外,还可通过促进乙酰CoA羧化酶的去磷酸化而使酶活性增强,也使脂肪酸合成加速。  胰高血糖素等可通过增加cAMP,致使乙酰CoA羧化酶磷酸化

二氢胆固醇的合成基本过程

  合成过程复杂,有近30步酶促反应,大致分为三个阶段:  乙酰基(C2)→异戊二烯(C5)→鲨烯(C30)→胆固醇(C27)  乙酰CoA合成异戊烯焦磷酸(IPP)  分子乙酰CoA经硫解酶催化缩合成乙酰乙酰CoA,由HMG -CoA合成酶催化结合1分子乙酰CoA,生成β-羟基-β-甲基戊二酸单酰

脂肪酸代谢物的调节介绍

  在高脂膳食后,或因饥饿导致脂肪动员加强时,细胞内软脂酰CoA增多,可反馈抑制乙酰CoA羧化酶,从而抑制体内脂肪酸合成。而进食糖类,糖代谢加强时,由糖氧化及磷酸戊糖循环提供的乙酰CoA及NADPH增多,这些合成脂肪酸的原料的增多有利于脂肪酸的合成。此外,糖氧化加强的结果,使细胞内ATP增多,进而抑

乙醛酸循环的反应过程介绍

  脂肪酸经过β-氧化分解为乙酰CoA,在柠檬酸合成酶的作用下乙酰CoA与草酰乙酸缩合为柠檬酸,再经乌头酸酶催化形成异柠檬酸。随后,异柠檬酸裂解酶(isocitratelyase)将异柠檬酸分解为琥珀酸和乙醛酸。再在苹果酸合酶(malate synthetase)催化下,乙醛酸与乙酰CoA结合生成苹

BetaOxidation-of-Fatty-Acids

Fatty acids provide highly efficient energy storage, storing much more energy for their weight than carbohydrates like glucose. Fatty acids are stored

关于不饱和脂肪酸氧化的基本介绍

  体内约有1/2以上的脂肪酸是不饱和脂肪酸(unsaturated fatty acid),食物中也含有不饱和脂肪酸。这些不饱和脂肪酸的双键都是顺式的,它们活化后进入β-氧化时,生成3-顺烯脂酰CoA,此时需要顺-3反-2异构酶催化使其生成2-反烯脂酰CoA以便进一步反应。2-反烯脂酰CoA加水后

关于脂肪酸的β氧化的介绍

  亚麻酸的β-氧化在主体碳链上与其他脂肪酸并无二致,主要过程是从甘油酯上分离后转运至特殊的过氧化物酶体-乙醛酸循环体(glyoxysome)中,在乙醛酸循环体中,通过与脂肪酸合成循环相反的过程即声-氧化而最终转化为乙酰CoA。这一过程在植物细胞内与乙醛酸循环相互偶联,以尽快利用糖异生作用( gly

乙醛酸循环的化学历程

总反应方程式2乙酰辅酶A+NAD++2H₂O→琥珀酸+2辅酶A+NADH+H+ 反应过程脂肪酸经过β-氧化分解为乙酰CoA,在柠檬酸合成酶的作用下乙酰CoA与草酰乙酸缩合为柠檬酸,再经乌头酸酶催化形成异柠檬酸。随后,异柠檬酸裂解酶(isocitratelyase)将异柠檬酸分解为琥珀酸和乙醛酸。再在

脂肪酸的β氧化过程

脂肪酸的β-氧化植物亚麻酸分解的基本过程亚麻酸的β-氧化在主体碳链上与其他脂肪酸并无二致,主要过程是从甘油酯上分离后转运至特殊的过氧化物酶体-乙醛酸循环体(glyoxysome)中,在乙醛酸循环体中,通过与脂肪酸合成循环相反的过程即声-氧化而最终转化为乙酰CoA。这一过程在植物细胞内与乙醛酸循环相互

三羧酸循环的反应式

Acetyl-CoA + 3 NAD+ + FAD + GDP + Pi + 3 H2O →CoA-SH + 3 NADH + 3 H+ + FADH2 + GTP + 2 CO2值得注意的是,CO2的两个C并不来源于乙酰CoA,而是OAA。

ACADSB基因突变与药物因子介绍

短/支链酰基辅酶a脱氢酶(ACADSB)是脂肪酸或支链氨基酸代谢中催化酰基辅酶a衍生物脱氢的酶家族中的一员底物特异性是定义该基因家族成员的主要特征。acadsb基因产物对短支链酰基辅酶a衍生物(s)-2-甲基丁基辅酶a具有最大的活性,但也与其他2-甲基支链底物和短直链酰基辅酶a发生显著反应。该cDN

ACADSB基因编码功能及结构描述

短/支链酰基辅酶a脱氢酶(ACADSB)是脂肪酸或支链氨基酸代谢中催化酰基辅酶a衍生物脱氢的酶家族中的一员底物特异性是定义该基因家族成员的主要特征。acadsb基因产物对短支链酰基辅酶a衍生物(s)-2-甲基丁基辅酶a具有最大的活性,但也与其他2-甲基支链底物和短直链酰基辅酶a发生显著反应。该cDN

The-Citric-Acid-Cycle

The Krebs cycle, also called the citric acid cycle, is a fundamental metabolic pathway involving eight enzymes essential for energy production through

脂肪酸氧化分解的限速酶是什么

脂肪酸氧化分解的限速酶是肉碱脂酰转移酶Ⅰ。肉碱脂酰转移酶Ⅰ是脂肪酸氧化的限速酶,脂酰CoA进入线粒体是脂肪酸氧化的主要限速步骤。机体在饥饿、高脂低糖膳食或糖尿病时,糖利用下降而需要脂肪酸供能,此时肉碱脂酰转移酶Ⅰ活性增加,脂肪酸氧化增加。反之,饱食后脂肪合成及丙二酰CoA增加,脂肪酸的氧化分解减弱。

世界骨科联盟成立

  由近70个国家和地区的骨科专家组成的世界骨科联盟(WOA)11月15日在中国北京成立,中华医学会骨科学分会主任委员王岩教授任联盟主席。WOA是以提高发展中国家骨科医疗水平为目的的国际学术团体。联盟希望通过成员携手合作,提高中国和其他发展中国家医疗水平、推动医生教育和产品开发等活动,为骨骼与肌肉创

骨科患者病例分析

这名病人入住骨科开始,从管床医生到护士甚至病房护工清洁工都很明白一个事实:他是来找茬的!病例资料如下:主  诉: 右肱骨髁上骨折内固定术后一年,右前臂疼痛两月。现病史:患者自诉于约一年前因右肱骨髁上骨折在我院行切开复位骨折内固定手术,术后四月复片骨折愈合。现患者术后一年,患肢功能回复一般,行X线检查

CROT基因突变与药物因子介绍

这个基因编码肉碱/胆碱乙酰转移酶家族的一个成员。编码的蛋白质将4,8-二甲基壬酰基-CoA转化为相应的肉碱酯这种酯交换反应发生在过氧化物酶体中,是将长链酰基-CoA分子从过氧化物酶体转运到细胞质和线粒体所必需的。因此,蛋白质在脂质代谢和脂肪酸β氧化中起作用。已经描述了选择性剪接的转录变体。[由ref

CROT基因编码功能及结构描述

这个基因编码肉碱/胆碱乙酰转移酶家族的一个成员。编码的蛋白质将4,8-二甲基壬酰基-CoA转化为相应的肉碱酯这种酯交换反应发生在过氧化物酶体中,是将长链酰基-CoA分子从过氧化物酶体转运到细胞质和线粒体所必需的。因此,蛋白质在脂质代谢和脂肪酸β氧化中起作用。已经描述了选择性剪接的转录变体。[由ref

关于三羧酸循环的循环过程

  乙酰-CoA进入由一连串反应构成的循环体系,被氧化生成H₂O和CO₂。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloaceticacid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citratecycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙

三羧酸循环的循环过程介绍

乙酰-CoA进入由一连串反应构成的循环体系,被氧化生成H₂O和CO₂。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloaceticacid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citratecycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的