打造捕捉引力波高能辐射的天网

日前,中国科学院宣布启动了战略性先导科技专项“空间科学(二期)”。在本次宣布的项目中,将首先发射的卫星名叫“引力波暴高能电磁对应体全天监测器”(GECAM)。 这个项目针对近年来新出现的引力波研究重大机遇,采取了“短平快”的策略,成为空间先导专项实施以来首个机遇型项目。 抓机遇:宝贵机会不容错失 近年来,引力波相关研究取得了一系列突破性进展。2017年,诺贝尔物理学奖授予了引力波的发现者。引力波及其电磁对应体成为当前及今后很长时期内物理学和天文学的研究前沿,将产生一系列重大科学突破。 GECAM项目首席科学家、中科院高能物理所副研究员熊少林在接受《中国科学报》专访时表示,到2020年,地面引力波探测器将达到设计灵敏度,预期发现大量的引力波事件,届时将是探测研究引力波电磁对应体的重要机遇窗口,然而,现有的探测引力波高能电磁对应体的空间望远镜综合性能不足,容易错失宝贵的发现机会。 为了抓住引力波研究的重大机遇,中科院高......阅读全文

《科学》:地球引力扭曲月球外表

  英国广播公司网站11月12日报道,根据美国研究人员的最新研究结果,地球在塑造月球表面方面发挥了重要作用。  该研究小组成员说,地球的引力在古代扭曲了月球的形状。  这导致了月球赤道“向外凸出”,而且可以解释为何月球的最远处甚至今天都比其最近处更高。该研究的详细情况发表在美国《科学》周刊

研究确定核子引力形状因子

近日,中国科学院理论物理研究所助理研究员曹雄辉和研究员郭奉坤,联合四川大学助理研究员李衢智和湖南大学教授姚德良,利用模型无关的方法,精确确定了真实世界中核子的引力形状因子。核子包括质子和中子。它们组成了各种各样的原子核,提供了宇宙中可见物质的大部分质量。物理学家以电子为探针去“轰击”质子,观测到质子

极化原子间微弱引力首次测得

奥地利科学家首次借助激光,让几个原子同时极化,使原子两侧分别带正电荷和负电荷,从而能相互吸引,形成一种非常特殊的键合态,并对其进行了测量。这一研究发表于《物理评论X》杂志,有望在量子和天体物理学领域发挥作用。 在呈电中性的原子内,带正电的原子核被带负电的电子包围,这些电子就像云一样围绕在原

极小质量物体的引力成功测得

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/518014.shtm来自英国、荷兰和意大利的科学家成功测量了质量极小物体的引力,为探索量子引力理论开辟了道路。理解量子引力有助科学家解开一些宇宙谜团,如宇宙如何开始,黑洞内部发生了什么,甚至可能为统一描述

中外团队首次发现引力子激发

该校物理学院杜灵杰教授领衔的国际团队利用极端条件下的偏振光散射技术,在砷化镓量子阱中对分数量子霍尔效应的集体激发进行了测量,在世界上首次观察到引力子激发,即引力子在凝聚态物质中的新奇准粒子。相关研究发表于3月28日的国际学术期刊《自然》。引力子的研究,一直是物理学研究的终极问题之一。近年来,有理论物

中外团队首次发现引力子激发

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519910.shtm

芬兰学者提出新量子引力理论

长期以来,物理学家一直在努力调和现代物理学的两大支柱——量子场论和爱因斯坦广义相对论之间的不兼容性。如今,芬兰阿尔托大学研究人员提出了一种新的量子引力理论,它描述引力的方式与粒子物理学标准模型一致,为深入理解宇宙起源打开了思路。相关研究发表在最新一期《物理学进展报告》上。能够统一自然界所有基本相互作

心电图分析:宽QRS波+窄QRS波

宽QRS波一定代表室性心律失常吗?窄QRS波一定代表房性心律失常吗?就上述两者之一进行讨论时,我们往往都会觉得力不从心,当两者一同袭来,我们还能否招架得住?最近有学者在《Circulation》上报道了这样一个病例,值得我们认真分析和学习。患者男性,18岁,因心悸、乏力就诊于当地医院,12个月前因预

吸波材料知识介绍之吸波材料的损耗型吸波机制

上一篇文章,我们只是粗略地介绍了一下吸波材料的类型和与吸波原理相关的知识。那么您可能会问:吸波材料为什么会吸收电磁波?在接下来的文章中,我们会向您较详细地介绍吸波材料的两大类吸波机制。今天我们向您介绍损耗型吸波机制。材料损耗是指电磁波进入吸波材料内部,其能量被材料有效吸收,转化为热能或其他形式能量而

转基因食品大趋势——引力大于阻力

  转基因食品的话题一直引发热议。其他国家怎么看待转基因食品?人们有很多疑问,也有一些流言。为此新华社记者调查了全球多个国家,其中既有转基因食品“大本营”美国,也有对转基因持怀疑态度的法国。但总的来看,大势明朗:转基因的引力大于阻力。   已非有无之争   关于转基因食品争论的一个焦点是能否安全

《自然》论文:微型装置可测量地球引力

  一个测量局部微小引力扰动(包括由地下隧道或地底石油等产生的引力扰动)的仪器诞生了,该仪器不仅价格低廉,且方便携带。该硅基设备敏感度足以测量地球固体潮:在日、月引潮力的作用下,固体地球产生的周期性形变的现象。该设备可应用于地球科学、工程、石油和天然气勘探以及环境监测等方面。  重力仪可用于测量重力

太阳引力可用于放大星际传播信号

  据《新科学家》杂志网站近日报道,德国天文物理学家迈克尔·希帕克首次通过计算证明,太阳引力可用来放大星际探测器的传播信号,并提议,在距离太阳900亿千米的位置安装口径1米的小型望远镜,取代地面大型望远镜,解决去往太阳系附近恒星系统的探测器面临的星际通信难题。  早在1919年,爱因斯坦就预言并证实

地球引力对生长素分布的影响

茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生长素最适浓度很低,近地侧多了一些反而对根细胞的生

人工智能大幅提高引力透镜分析能力

  据物理学家组织网8月30日文章称,美国斯坦福直线加速器中心(SLAC)国家实验室和斯坦福大学的最新研究首次表明,人工智能神经网络可以准确地分析引力透镜,且比传统的方法快1000万倍,报告发表于英国《自然》杂志上。  引力透镜是爱因斯坦广义相对论所描述的一种现象。当光经过遥远星系、星系团及黑洞等具

验证引力波波动性的观测策略

  历史上,光的本性被描述成波或粒子。这两种观点分别由不同的实验证实,因此在科学界内部存在激烈争论。最终,随着量子力学的建立,科学家接受了波粒二象性。   那么引力波是否也和光波具有同样的特征?   2015年以来,美国激光干涉引力波天文台(LIGO)和欧洲处女座引力波探测器(VIRGO)已多次

吸波材料知识介绍之吸波材料简介

在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁

吸波材料知识介绍之结构型吸波机制

上一篇文章,我们介绍了吸波材料的损耗型吸波机制,这类型的吸波材料通常需要控制内部损耗介质的类型及结构问题。在这一篇我们讲述结构型吸波机制。结构型吸波材料主要是依靠相消原理【1】来吸收电磁波的。相位相消型吸波材料是按照电磁波的干涉原理来设计的。现以单层吸波材料为例加以说明。把吸波材料放置在金属基体上,

激发峰波和发射峰波是什么意思

发射峰是向外辐射光子或者热量的峰激发峰是吸收光子或者吸收热量将电子激发到激发态的峰

南海南部波波相互作用研究取得进展

波-波非线性相互作用是全球海洋中的普遍现象,可在不同时空尺度的波动之间传递能量,在能量级联和调节全球海洋环流中起着重要作用。在南海北部,由于吕宋海峡的存在,形成了世界上最强的内波,对于该海域的波-波非线性相互作用已被广泛研究。然而,在远离吕宋海峡的南海南部,相关研究较少。基于锚系潜标现场观测资料,中

阶梯波逆变器简介

  此类逆变器输出的交流电压波形为阶梯波,逆变器实现阶梯波输出也有多种不同线路,输出波形的阶梯数目差别很大。阶梯波逆变器的优点是,输出波形比方波有明显改善,高次谐波含量减少,当阶梯达到17个以上时输出波形可实现准正弦波。当采用无变压器输出时,整机效率很高。缺点是,阶梯波叠加线路使用的功率开关管较多,

【图解】T波记忆

  T波记忆(T wave memory),也称心脏记忆,是指常发生在间歇性左束支阻滞、室性期前收缩、右室起搏、室性心动过速、心室预激之后的一种T波改变。其特点是异常心室激动终止后仍能引起随后窦性心律时的T波改变,而且T波改变与异常心室激动发生时的向量方向相同。心电图表现为恢复窦性心律后的T波与

连续波的特点

中文名称:连续波 英文名称:continuous wave 应用学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器件技术参数(三级学科) 一种无线电通讯模式特点是:收发频率不同,上行下行之间没有时隙。

波像差的定义

从物点发出的波面经理想光学系统后 ,其出射波面应该是球面。但实际光学系统存在像差,实际波面与理想面就有了偏差。当实际波面与理想波面在出瞳处相切时,两波面间的光程差就是波像差。

边缘波的定义

中文名称边缘波英文名称edge wave定  义沿边界传播的一种特殊波动。如在海岸附近与海岸平行前进的海浪随着离岸距离的增大,波高迅速减小。应用学科大气科学(一级学科),大气物理学(二级学科)

【中国科学报】一场不容错过的科学盛宴

  从今年2月LIGO正式宣布直接探测到引力波,到6月再度发布引力波探测成果,依托引力波研究宇宙的窗口已被正式打开,这令国内外众多天文、物理学家为之振奋。  然而,当科学家期盼这一成果给相关研究带来革命性突破时,也有人质疑,直接探测引力波这一诺奖级成果已然被摘走,围绕引力波还能产生重大科学突破吗?近

心电图分析:P波高尖,是肺性P波吗?

一位54岁的男性患者,之前从未接受过正规的医疗服务,第一次在家庭医生处就诊。主诉为日常活动中出现气短,爬小段楼梯或平缓上坡即需要频繁休息。询问病史,过去1年无意中体重减少了40磅。过去无已知的疾病史,未应用任何药物。家庭史和社会史回顾,曾经在矿井工作35年。吸烟史20年,戒烟10年。体格检查,面色稍

声波的与正弦波、冲击波、纵波的联系

与正弦波的关系正弦波是最简单的波动形式。优质的音叉振动发出声音的时候产生的是正弦声波。正弦声波属于纯音。任何复杂的声波都是多种正弦波叠加而成的复合波,它们是有别于纯音的复合音。正弦波是各种复杂声波的基本单元。与冲击波的区别请注意,声波不是冲击波,声波前进的过程是相邻空气粒子之间的接力赛,它们把波动形

“天琴”:有望超前于欧洲LISA升空

  3月底,“天琴”空间引力波探测科学目标研讨会在珠海召开,项目组不同课题的负责人介绍了空间引力波探测项目“天琴”计划的最新研究进展。  自引力波被发现至今,科学界始终对我国引力波探测计划十分关注。诸如,我国该不该继续推进引力波探测计划?我国是否有能力与国际相关引力波探测项目一较高下?这样的讨论时时

船用牵引力测力仪有什么特点

船用牵引力测力仪对于造船,海洋捕捞等都是有非常重要的作用的,是对于船舶的稳定性和很多性能上有一定的保障的,那么在特点上船用牵引力测力仪具备了什么特点?防水专业设计,IP等级达到66级, 测量精度达到容量的0.1%, 用于工业测力领域的新产品, 该产品精度高, 在使用的过程中携带方便, 可扑捉力的峰值

传销的神奇“吸引力”源于精准靶向“用药”

  千万别苛责一些大学生“智商余额不足”、“活该”被骗。在传销手段不断升级换代的当下,有时候也是防不胜防;或者说,比起那些农民、普通的打工者,他们有着更为强烈的摆脱现实命运、实现人生逆袭的渴望。而现代传销的“精绝”之处,正在于精准定位、靶向“用药”,能够细致探察人类内心的幽微之处,无限放大内心的欲望