哈佛医学院分子影像研究中心主任谈分子影像学
在今年早些时候由美国国立生物医学影像和生物工程研究所举办一次研讨会上,哈佛医学院/麻省总医院分子影像研究中心主任Ralph Weissleder作了专题讲座,题目是“Imaging Molecules: The Promise of Preemptive Medicine”,这里的Preemptive Medicine,与分子医学或个性化医学等名词的含义相当,也就是在疾病产生前即实施干预或治疗的医学。 他说,分子医学的进一步发展,必须依靠生物影像技术的进一步发展,必须依靠定量分析技术的发展,必须依靠化学探针技术的发展,同时,另外2大技术的支持也不可或缺,这就是纳米技术和基因排序技术。 Weissleder称,目前的生物影像技术,3D成像,是细胞和亚细胞水平显像(即分子影像学)技术的......阅读全文
哈佛医学院分子影像研究中心主任谈分子影像学
在今年早些时候由美国国立生物医学影像和生物工程研究所举办一次研讨会上,哈佛医学院/麻省总医院分子影像研究中心主任Ralph Weissleder作了专题讲座,题目是“Imaging Molecules: The Promise of Preemptive Medicine”,这
近红外荧光成像技术为肿瘤手术“导航”
2013年,美国哈佛医学院教授John V Frangioni提出,近红外荧光成像技术可以为临床医生提供有效帮助,未来十年将在肿瘤术中极具应用前景。在中国,MI从实验室走进手术室,已然让这一设想成为现实。 近一百年来,人类获取癌症信息的方法不断创新:从上个世纪初的X射线到70年代的CT,再到
分子染料指导近红外光谱断层成像技术精确切除乳腺肿瘤
分析测试百科网讯 在乳腺癌等癌症的临床治疗中,肿瘤的精确定位一直是让医生头痛的问题。外科医生通常根据临床经验对肿瘤组织进行切除,但是少切会造成复发,多切又会对患者造成伤害。因此,如果有一种能在手术中标记肿瘤边界的方法将具有重要的临床应用价值。 分子染料,比较常见的如食用色素,已经被用于指导近红
近红外量子点生物探针用于肿瘤靶向成像和肿瘤切除
早期检测和随后的手术完全切除是治疗癌症最有效的方法 , 然 而检测灵敏度低和不能完全确定肿瘤边缘部位是治疗时面临的两个挑战性的问题,基于纳米颗粒的影像引导手术治疗已被证明是肿瘤靶向成像和随后的减瘤手术的有 效方法,近红外荧光探针,如近红外量子点具有深层组织渗透性和较高的灵敏度可用于肿瘤检测。本研究中
武汉大学Nature子刊开发成像新技术
来自武汉大学药学院、斯坦福大学的研究人员称,他们开发出了一种适用于近红外II区(NIR-II)荧光成像的小分子染料。这一研究结果发布在11月23日的《自然材料》(Nature Materials)杂志上。 武汉大学药学院的洪学传(Xuechuan Hong)教授,及斯坦福大学的戴宏杰
近红外荧光双模态影像导航的脑肿瘤准确定位和精准手术
帮助指导肿瘤的精准手术切除,可大大提高患者预后,具有非常重要的临床应用前景。 最近科学家开发了一种新型的磁共振/近红外二区荧光双模态成像纳米探针(Gd-Ag2S nanoprobe),该探针由Ag2S近红外量子点及偶联其表面的Gd-DOTA构成,可实现基于Gd的高组织穿透深度磁共振对比增强成
重磅!六项医工交叉团体标准获批发布实施
近期,中国科学院分子影像重点实验室牵头撰写的《胃部肿瘤智能辅助诊断软件测试和性能评价规范》(标准编号:T/SCGS 313001-2023)、《医用内窥镜 内窥镜荧光摄像系统影像质量评价规范》(标准编号:T/SCGS 313002-2023)、《近红外二区荧光成像技术影像质量评价规范》(标准编号
核磁、质谱、红外谱图怎么分析
核磁是通过原子核在不同化学环境下核跃迁的化学位移值不一样,判断原子所处基团或位置;质谱是通过离子化后的分子片段来推断原来的物质结构;红外是确定分子或物质的官能团。一般来说利用核磁可以确定简单的有机分子;更多的需要多种表征方法相结合。
近红外脑功能成像原理简介
对人体来说,体内95%的能量来自于不同的氧化反应,氧是一切生命活动的基础。组织中的氧运输其主要载体是血红蛋白,它由氧合血红蛋白(HbO2)和脱氧血红蛋白(Hb)组成。随着人体组织的有氧代谢,氧合血红蛋白和脱氧血红蛋白的含量会不断发生变化,因而组织中的血氧含量的变化能够反映出人体生理状态、细胞的活动变
红外、紫外、核磁和质谱的异同点
四大谱都是有机结构解析中最重要的数据,其中红外和紫外都可以给出基团信息,核磁是给定空间结构的重要信息,质谱给出分子量和元素组成。红外利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构
近红外二区小分子光学探针设计与血流动态成像研究
近红外二区(NIR-II,1000-1700 nm)小分子光学探针因其生物兼容性好、组织穿透能力强、成像对比度高而备受关注。目前,近红外二区小分子光学探针分为两类:多甲川类衍生物,其Stokes位移小且稳定性欠佳;苯并双噻二唑衍生物,其荧光亮度较低。因此,发展新型近红外二区小分子荧光染料,特别是
近红外二区活体正置显微影像系统
近红外二区活体显微影像系统将近红外二区荧光成像技术与传统的荧光显微技术相结合,是一款宽场激发、面阵探测的新颖近红外二区荧光正置显微成像系统,可以实现对近红外二区荧光探针的光学表征以及活体生物样品、厚生物组织等的大深度、高空间分辨成像。该系统具有相对可见光和近红外一区更大的成像深度(可达1.2mm
苏州纳米所受邀发表近红外II区活体荧光成像展望
近红外II区荧光(1000-1700 nm, NIR-II)极大克服了传统荧光 (400-900 nm) 面临的强的组织吸收、散射及自发荧光干扰,在活体成像中可实现更高的组织穿透深度和空间分辨率,被视为最具潜力的下一代活体荧光影像技术。 中国科学院苏州纳米技术与纳米仿生研究所研究员王强斌团队经
我国成果研制近红外二区成像设备
从中国科学院自动化研究所获悉,设在该所的中科院分子影像重点实验室历经近3年的医-工交叉深入探索,成功研发出新型近红外二区荧光成像系统及手术导航技术,并在国际上首次开展临床应用转化研究。 当前肿瘤治疗的主要手段依然是手术切除,精准、有效的肿瘤切除成为提高患者生存率的关键,而新兴的光学分子影像技术
复旦大学张凡教授实现在活体内提高近红外光成像效果
近日,复旦大学化学系张凡教授研究团队利用超分子组装实现近红外纳米探针在肿瘤部位的高效聚集,提高了病灶部位的成像信号。与此同时,通过近红外光调控实现在肝脏部位的可控解聚,有效降低了成像的背景信号以及颗粒沉积带来的潜在生物毒性。相关研究论文“Supramolecularly Engineered N
近红外二区磷光成像新进展
当前,近红外二区(NIR-II,1000-1700nm)荧光成像在生物医学基础研究和肿瘤术中精准切除等临床转化方面展现出应用前景。相较于近红外一区(NIR-I,700-1000 nm),近红外二区荧光成像具备的在生物体内散射低、组织穿透深且成像分辨率高的优势,使其被视为颇具发展潜力的影像技术。
光机所利用近红外激光实现靶向肿瘤治疗
近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室研究员刘军课题组取得科研新进展,实验中采用黑磷量子点复合材料作为双模成像引导用试剂,在近红外激光的诱导下,可对叶酸受体(FR)过度表达的肿瘤实现靶向可视化协同杀伤治疗。相关成果发表于Nanophotonics(DOI: https:
3D类器官深层智能成像分析加速精准用药流程
如今研究人员正越来越多的应用3D 细胞培养、微组织和类器官技术来填补2D 细胞培养与体内动物模型之间的差距。这是因为3D 模型能够更好地模拟微环境、细胞间相互作用和体内生物过程,因此相较于生化检测和2D 模型,3D 模型可提供更具生理相关性的条件。此外,其形态学和功能分化程度更高,这也赋予了它们更接
基于分子成像的肿瘤分子分型研究取得突破
恶性肿瘤是分子水平上高度异质性的疾病,传统的病理形态学诊断已不能适应肿瘤精准诊治的发展需求,急需开发分子诊断技术,从分子水平研究肿瘤发生发展的病理学机制及生物学行为。 肺癌发病率和死亡率居世界恶性肿瘤之首,且呈逐年上升趋势。肺癌具有超级异质性的特性:个体异质—不同患者表皮生长因子受体(EGF
基于分子成像的肿瘤分子分型研究取得突破
恶性肿瘤是分子水平上高度异质性的疾病,传统的病理形态学诊断已不能适应肿瘤精准诊治的发展需求,急需开发分子诊断技术,从分子水平研究肿瘤发生发展的病理学机制及生物学行为。 肺癌发病率和死亡率居世界恶性肿瘤之首,且呈逐年上升趋势。肺癌具有超级异质性的特性:个体异质—不同患者表皮生长因子受体(EG
基于分子成像的肿瘤分子分型研究取得突破
恶性肿瘤是分子水平上高度异质性的疾病,传统的病理形态学诊断已不能适应肿瘤精准诊治的发展需求,急需开发分子诊断技术,从分子水平研究肿瘤发生发展的病理学机制及生物学行为。 肺癌发病率和死亡率居世界恶性肿瘤之首,且呈逐年上升趋势。肺癌具有超级异质性的特性:个体异质—不同患者表皮生长因子受体(EG
分子影像成像分析系统的选择应该遵循哪些原则
A 分子影像成像分析系统的厂商的产品线要拥有普通凝胶成像分析系统 化学发光成像分析系统,多 色荧光成像分析系统,多功能活体成像分析系统这些比较长的产品线,这样可以给老师足够的选择空间。 并且可以从普通凝胶成像分析系统可以升级到化学发光成像分析系统的空间,从化学发光成像分析系统升 级到多色荧光成像分析
分子影像为肿瘤诊断与治疗提供新技术
近日,中科院自动化所分子影像重点实验室与中国人民解放军总医院(301医院)介入超声科合作,在分子影像应用于胰腺癌的介入光热治疗,以及应用于肝癌的分子标志物生物学机制研究两大领域,取得了显著的临床科研成果。相关研究进展分别发表于医学研究领域和生物材料领域的顶级期刊,成为实验室与临床医院医工交叉合作
XRD、XPS、XRF、红外、核磁样品制备及注意事项!
红外光谱样品制备 红外光谱是未知化合物结构鉴定的一种强有力的工具,尤其近几年来各种取样技术和联用技术的迅速发展,使得它成为分析化学应用中最广泛的仪器之一。 样品要求: 1、气体、液体(透明,糊状)、固体(粉末、粒状、片状…)。 气体样品:采用气体吸收池进行测试,吸收峰的强度可以通过调整气
近红外成像技术促进机器视觉的新发展
习惯上机器视觉被定义为:用于检查、过程控制及自动导航的电子成像。在机器视觉应用中,计算机(不是人类)使用成像技术来捕获图像作为输入来实现提取和传递信息输出的目的。据麦姆斯咨询报道,除传统工业应用,先进驾驶辅助系统(ADAS)、增强现实和虚拟现实(AR/VR)技术及智能安全系统的机器视觉能力均要求使用
Hitachi近红外脑功能成像系统的功能特点
1.fNIRS Hyperscanning脑功能超扫描系统:日立Hitachi提供了fNIRS Hyperscanning脑功能超扫描解决方案,日立Hitachi超扫描系统的模块化设计可以提供2人以上实时同步进行脑功能超扫描测试使用并支持完全的数据同步。fNIRS超扫描技术提供了比f
光声成像与近红外光学成像技术原理及应用介绍
光声成像与近红外光学成像的完美结合 1.光声成像结合近红外光学,两种成像模式的融合:近红外超声成像技术的原理:当近红外脉冲激光照射到生物组织上,生物组织吸收光能量而产生热膨胀,在脉冲间隙释放能量发生收缩。伴随着热胀冷缩的过程会产生高频超声波,吸收光能量的多少决定了产生的超声波的强度。因为不同的组织对
荧光成像技术的广泛应用
当今生物医学的发展已由传统基于症状的治疗模式,向以信息为依据的精准诊疗模式转变,医学影像技术的发展反映并引领着临床医学的进步。荧光成像技术具有检测灵敏度高、无辐射危害等优点,在生物医学领域具有广泛的应用。 近日,中国科学院苏州纳米技术与纳米仿生研究所研究员王强斌课题组接受《美国化学学会—纳
广视角显微镜快速实现大脑更深处组织高清成像
据当地时间7日发表在《科学进展》杂志上的论文,麻省理工学院和哈佛大学的研究小组开发出一种双光子成像显微镜的改进版本,它可以让科学家更快地获得大脑内血管和单个神经元等结构的高分辨率图像。新技术或可促进生物学、神经科学的研究。 研究人员经常使用双光子显微镜制作大脑等组织的高分辨率3D图像。该显微镜
哈佛医学院6名研究人员中毒
据香港《星岛日报》10月26日报道,近期公布的一份美国哈佛大学内部文件显示,哈佛大学医学院曾发生一起中毒案,有6名医学研究人员中毒,目前尚不清楚是否有人蓄意下毒。 哈佛大学一份内部文件透露,今年8月26日该校发生6名研究人员中毒事件,这6名研究人员都是哈佛大学医学院病理学学科的师生。当时,