最新研究表明线粒体可由父系遗传

近日发表在PNAS 《美国科学院院刊》上的一项研究表明,线粒体可由父系遗传。来自美国辛辛那提儿童医院的黄涛生博士和梅奥诊所的Paldeep Atwal博士称他们在三个家庭中发现了mtDNA双亲遗传。 传统观念里,大多数哺乳动物的线粒体和线粒体DNA都是只通过母系遗传。尽管有其他物种已被发现线粒体偶尔会经历父系遗传,但之前关于人类父系遗传线粒体的报道大多是因为污染或样本混淆。然而,最近美国的实验室发表论文,称他们在三个家庭中发现了mtDNA双亲遗传。研究人员还在独立实验室中通过不同方法证实了他们的成果。 在分析一名疑似患有线粒体疾病的四岁男孩的mtDNA时,科研人员发现,尽管他们没有在线粒体基因组中发现任何致病变异,但发现男孩带有高水平的异质性——9种同质性变异和31种异质性变异。在排除样本混淆之后,研究人员从这名男孩的家人那里获得了血液样本,并发现他的亲人也有着相同的异质性模式。这表明人类家族也存在mtDNA的双亲遗传。......阅读全文

最新研究表明线粒体可由父系遗传

  近日发表在PNAS 《美国科学院院刊》上的一项研究表明,线粒体可由父系遗传。来自美国辛辛那提儿童医院的黄涛生博士和梅奥诊所的Paldeep Atwal博士称他们在三个家庭中发现了mtDNA双亲遗传。  传统观念里,大多数哺乳动物的线粒体和线粒体DNA都是只通过母系遗传。尽管有其他物种已被发现线粒

最新研究表明线粒体可由父系遗传

  近日发表在PNAS 《美国科学院院刊》上的一项研究表明,线粒体可由父系遗传。来自美国辛辛那提儿童医院的黄涛生博士和梅奥诊所的Paldeep Atwal博士称他们在三个家庭中发现了mtDNA双亲遗传。  传统观念里,大多数哺乳动物的线粒体和线粒体DNA都是只通过母系遗传。尽管有其他物种已被发现线粒

推翻教科书!线粒体DNA可通过父系遗传

  对于大多数哺乳动物来说,线粒体和线粒体DNA都是只通过母系遗传。尽管其他生物偶尔会经历父系遗传,但之前关于人类父系遗传线粒体的报道大多是因为污染或样本混淆。  然而,美国辛辛那提儿童医院的黄涛生博士和梅奥诊所的Paldeep Atwal博士本周在《美国科学院院刊》(PNAS)上发表论文,称他们在

国际团队揭示为什么线粒体不能通过父系遗传

  众所周知,人类的遗传物质除细胞核中的DNA(脱氧核糖核酸)外,还有线粒体DNA。一个国际团队24日说,他们探清了为什么线粒体DNA不能通过父亲的精子,而只能通过母亲的卵子遗传给后代。  线粒体是细胞中提供能量的细胞器,被称作细胞的“能量工厂”。  这项发表在新一期美国《科学》杂志上的研究报告说,

Science揭示细胞凋亡期间,mtDNA逃离线粒体机制

  在一项新的研究中,由澳大利亚莫纳什大学生物医学发现研究所的Benjamin Kile教授领导的一个国际研究团队发现并拍摄了在细胞死亡期间线粒体DNA(mtDNA)逃离线粒体(细胞内产生能量的细胞器)的确切时刻。相关研究结果发表在2018年2月23日的Science期刊上,论文标题为“BAK/BA

自闭症儿童可能遗传父系DNA突变

基于新发现,研究人员提出了一种更复杂的自闭症模型。图片来源:MEGAPRESS 没有一种基因,当其突变时,会导致自闭症。但在过去的10年中,研究人员已经发现了数百种基因变异,似乎会影响大脑发育,从而增加患自闭症的风险。然而,这些科学家主要研究的是DNA的变异,这些变异直接编码了蛋白质

自闭症儿童可能遗传父系DNA突变

  基于新发现,研究人员提出了一种更复杂的自闭症模型。图片来源:MEGAPRESS   没有一种基因,当其突变时,会导致自闭症。但在过去的10年中,研究人员已经发现了数百种基因变异,似乎会影响大脑发育,从而增加患自闭症的风险。然而,这些科学家主要研究的是DNA的变异,这些变异直接编码了蛋白质组成部

卵细胞如何选它们最好的线粒体传递给下一代?

  发育中的卵细胞会进行测试,以选择最健康的能量制造机器,并传给下一代。一项最近发表在Nature杂志上,关于果蝇的新研究,展示了这种潜规则“面试”是如何进行的。  这项工作的重点是线粒体,这是一种细胞器,它将我们吃的糖、脂肪和蛋白质转化为人体数百万细胞所需要的能量。在纽约大学医学院和多伦多大学的研

完整线粒体mtDNA提取神器SageHLS在测序合成的应用

有关线粒体DNA:线粒体是一种存在于大多数细胞中的由两层膜包被的细胞器,细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所。线粒体病是遗传缺陷引起线粒体异常,致使ATP合成障碍、能量来源不足等导致的一组异质性病变,又称为线粒体细胞病。常见的线粒体疾病有Leber遗传性视神经病变(LHON)、线粒体脑

昆明动物研究所关于东亚人群源流研究取得新进展

  随着大量线粒体DNA(mtDNA)全基因组信息的积累,科学家对东亚人群的母系遗传结构已经有较为清晰的认识。然而,研究中仍发现有一些mtDNA类型无法识别。虽然这些未定类型的分布频率很低,但其系统发育地位究竟如何迄今仍不得而知。与此同时,由于东亚具有丰富且较为连续的古人类(the a

线粒体疾病遗传的特点

线粒体疾病遗传的特点有母系遗传、存在异质性和阈值以及遗传性等特点,具体如下。一、母系遗传卵子与精子细胞核的结合是对等的,但细胞质的结合是远远不对等的。在绝大多数情况下,突变的线粒体DNA通过母亲卵子细胞质的线粒体传给子代,通过父亲传递的极为罕见。二、有数量概念一个细胞的细胞质中可有几千个线粒体DNA

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

关于线粒体DNA的主要功能介绍

  复制  mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。  遗传  由于线粒体会通过卵细胞传递,相关疾病

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

概述线粒体DNA的主要功能

  1、复制  mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。  2、遗传  由于线粒体会通过卵细胞传递,

细胞化学基础线粒体DNA主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

颠覆传统观点:西湖大学蒋敏团队发现,母亲年龄较大可防止线粒体基因突变向后代传递

  线粒体是细胞的能量工厂和重要的信号枢纽,其拥有自己的基因组——线粒体DNA(mtDNA),由37个基因组成,包括2个核糖体RNA(rRNA)、22个转运RNA(tRNA)以及13个蛋白质编码基因,这些蛋白质是氧化磷酸化(OXPHOS)系统的核心亚基。  mtDNA的致病性突变会导致线粒体疾病,其

颠覆传统观点:西湖大学蒋敏团队发现,母亲年龄较大可防止线粒体基因突变向后代传递

  线粒体是细胞的能量工厂和重要的信号枢纽,其拥有自己的基因组——线粒体DNA(mtDNA),由37个基因组成,包括2个核糖体RNA(rRNA)、22个转运RNA(tRNA)以及13个蛋白质编码基因,这些蛋白质是氧化磷酸化(OXPHOS)系统的核心亚基。  mtDNA的致病性突变会导致线粒体疾病,其

线粒体病的病因

  基因突变(90%):  线粒体是细胞内提供能量的细胞器,人类mtDNA是长16569bp的环状双链分子,分轻链和重链,含37个基因,主要编码呼吸链及与能量代谢有关蛋白,mtDNA缺失或点突变使编码线粒体氧化代谢过程必需的酶或载体发生障碍,糖原和脂肪酸等不能进入线粒体充分利用和产生足够的ATP,导

线粒体病的发病机制

  线粒体是密切与能量代谢相关的细胞器,无论是细胞的成活(氧化磷酸化)和细胞死亡(凋亡)均与线粒体功能有关,特别是呼吸链的氧化磷酸化异常与许多人类疾病有关。  由于受精卵线粒体均来自卵子,故线粒体病是与孟德尔遗传不同的母系遗传方式,与常染色体遗传病类似,但每一代发病个体多于常染色体遗传病,母亲将mt

专家点评NCB-|-田烨课题组揭示神经元应激可以跨代传递

  现代遗传学始于孟德尔对遗传规律的探究,自此揭开了破解DNA是遗传信息载体的序幕。随着研究的深入,人们进一步发现遗传信息与生物体所处的环境和经历共同作用,影响个体的性状,包括发育、生殖、衰老以及行为等等。由于环境是动态变化的过程,生物学家长久以来都很在关注,遗传信息是否可以记录个体的经历以及环境胁

真菌类的线粒体遗传

1、酵母菌小菌落的遗传:啤酒酵母属于子囊菌,它在有性生殖时,不同交配型相结合形成的二倍体合子。酵母有一种“小菌落”个体。这种类型经培养后只能产生小菌落。如果把小菌落酵母同正常个体交配,则产生正常的二倍体合子。经减数分裂产生单倍体后代也表现正常,不再分离小菌落。这表明小菌落性状的遗传与细胞质有关,而且

广东医生在线粒体疾病阻断研究领域获新突破

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/477811.shtm 线粒体置换技术原理图。省二医 供图  利用强制性线粒体自噬降解线粒体置换过程中来源于核供体胚胎的线粒体模式图。省二医 供图 近日,广东省第二人民医院(以下简称省二医

为何我们只遗传母亲的线粒体?

  最近,清华大学薛定教授和香港中文大学姜秉昊教授的联合课题组在线粒体遗传领域取得重要突破。他们以线虫为模式生物发现了调节父系线粒体选择性清除的一个关键机制,即线粒体分裂和融合之间的平衡。这一成果发表在近期的Nature子刊《Nature Communications》上。  众所周知,线粒体在哺乳

发表论文的捷径?线粒体测序论文太多

  David Roy Smith是来自加拿大韦仕敦大学的一位生物学助理教授,近期他在The Scientist杂志上发文,指出目前涌现了太多线粒体基因组测序论文,2014年GenBank中新增的线粒体基因组序列信息多达上千条,这几乎比上一年激增了15%。  Smith指出,很少有人会质疑这些线粒体

线粒体基因组的DNA相关介绍

  与细胞核DNA相比,mtDNA作为生物体种系发生的“分子钟”(molecular clock)有其自身的优点:①突变率高,是核DNA的10倍左右,因此即使是在近期内趋异的物种之间也会很快地积累大量的核苷酸置换,可以进行比较分析;②因为精子的细胞质极少,子代的mtDNA基本上都是来自卵细胞,所以m

昆明动物所建立人类线粒体DNA数据综合分析平台

  近年来,随着测序技术的快速发展和成本的降低,越来越多的人类线粒体DNA(mtDNA)基因组序列被测定,公共数据库中相关数据的存储量也显著增加。为了快速有效的分析、存储和利用这些已有数据以及处理新增mtDNA数据,中国科学院昆明动物研究所姚永刚研究员课题组的硕士研究生樊隆搭建了一个人