双酶双底物的双重免疫染色—多种组织抗原配对的双重酶
改良的 EnVision-HRP/AP 双酶双底物的双重免疫染色(间接法)——Ki-67-CK20 等多种组织抗原配对的双重酶实验步骤1. 恒冷切片或石蜡切片,厚 4~6 μm,常规处理。2. 0.1%NaN3+0.3%H2O2/TBS(50 mmol/L,pH 7.8)或 0.3%H2O2/甲醇,室温 20 min(阻断内源性过氧化物酶活性)。3. TBS 洗 5~10 min×3。4. 一抗 CK20(McAb)1:100,4℃,过夜。5. TBS 洗 5 min×3。6. EnVision-HRP(羊抗鼠)试剂,室温 30 min。7. TBS 洗 5 min×3。8. 正常鼠血清 1:10,室温 15 min(封闭前重标记一抗的游离位点)。9. TBS 洗 5 min×3。10. 第二种特异性一抗 Ki-67(McAb)1:100,37℃ 孵育 120 min,TBS 洗 5 min×3。11. 生物素化羊抗鼠 IgG1......阅读全文
双酶双底物的双重免疫染色—多种组织抗原配对的双重酶
改良的 EnVision-HRP/AP 双酶双底物的双重免疫染色(间接法)——Ki-67-CK20 等多种组织抗原配对的双重酶实验步骤1. 恒冷切片或石蜡切片,厚 4~6 μm,常规处理。2. 0.1%NaN3+0.3%H2O2/TBS(50 mmol/L,pH 7.8)或 0.3%H2O2/甲醇,
双酶双底物的双重免疫染色—淋巴瘤轻链κ、λ的双重酶标记
实验步骤1. 石蜡切片常规脱蜡至水(若用含汞固定液固定的组织,则需用内含 0.5% 碘的乙醇溶液脱汞 5 min,乙醇浓度为 70%,经自来水洗后以 2.5% 硫代硫酸钠浸洗 1 min,水洗)。2. 0.3%H2O2 甲醇液浸泡切片 30 min,自来水洗,蒸馏水洗,入 PBS(0.01mol/L
双侧双重带状疱疹病例分析
1 病历摘要患者女,64 岁。 因左侧头面及右侧腰腹部出现簇 集水疱伴疼痛 7 d 至我院就诊。患者 7 d 前无明显诱因 左侧头皮、额面部疼痛不适,呈间歇性刺痛,不久左侧 头皮、额部开始出现片状红斑,其上见散在丘疱疹、水 疱,且右腰腹开始出现簇集丘疱疹,疼痛明显,无明显 发热等症状。未行相关治疗,
精准检测去泛素化酶活性新型双泛素底物的使用
泛素-蛋白酶体(ubiquitin-proteasome system,UPS)途径介导的蛋白降解是机体调节细胞内蛋白水平与功能的一个重要机制。负责执行这个调控过程的组成成分包括泛素及其启动酶系统和蛋白酶体系统。泛素启动酶系统负责活化泛素,并将其结合到待降解的蛋白上,形成靶蛋白多聚泛
双重荧光素酶报告基因优缺点
双重荧光素酶报告基因优点是具有灵敏度高,缺点是需要多次实验。双荧光素酶报告基因检测系统因其具有灵敏度高、无细胞内源性表达干扰等优势,现已被广泛用于基因表达调控的研究中,同批次样品检测值也可能出现浮动。所以实验一般需要做3个或3个以上复孔,并且引入另一个报告基因作为内参。双荧光素酶报告基因检测是以荧光
【共享】双酶切
1、 在双酶切载体时如果2个酶切位点靠得很近,必须注意酶切顺序。因为有的限制性内切酶要求其识别序列的两端至少保留有若干个碱基才能保证酶的有效切割。有的酶要求识别序列两端有多个碱基的,则必须先切,否则就可能造成酶切失败。2、 回收PCR产物:回收的PCR产物片段=1:10 ,一般取前者0.03pmol
双酶切反应
双酶切buffer的选择: 1、U :Supplied with its own unique reaction buffer that is different from the four standard NEBuffers. Its compatibility with the fou
双酶切反应酶活性分析及双酶切建议缓冲液
同步双酶切是一种省时省力的常用方法。选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。NEB每一种酶都随酶提供相应的最佳 NEBuffer,以保证100%的酶活性。NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。能在最大程度上保证两种酶活性
双酶切反应酶活性分析
同步双酶切是一种省时省力的常用方法。选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。能在最大程度上保证两种酶活性的缓冲
“双反”案的双重启示-是经济账更是战略账
“双反”案的背后,不仅是经济账,还有战略账。在计算“双反”案可能导致中欧多大的双输的同时,它也提醒我们:发展一个新型战略产业,如何才能少走弯路。 大棒终于落下。北京时间6月4日晚,欧盟委员会正式就去年9月启动的对华光伏产品“双反”调查作出初裁,决定从2013年6月6日起至8月
质粒DNA的双酶切
实验概要掌握质粒DNA双酶切的原理和操作方法。实验原理分子生物学实验中,基因的重组与分离涉及到一系列的酶促反应。许多种酶在基因克隆实验中有着广泛的用途。限制性内切酶是一类能识别双链DNA分子特异性核酸序列的DNA水解酶。多种细菌能合成限制性核酸酶,这是它们保护自己,降解外来DNA分子的重要手段。每一
光镜下双/多重免疫标记实验——免疫荧光双重标记TRITCFITC
双重或多重标记是利用免疫学和细胞化学原理,在同一张切片上同时采用或先后采用不同颜色的荧光色素或酶促产物,或采用不同直径大小颗粒胶体金来原位标记两种或两种以上抗原-抗体复合物,达到在同一细胞或亚细胞水平显示不同抗原成分(定性、定位、定撤),分析不同抗原成分相互间功能的增消关系,操作遵循的原则与要求同单
免疫酶细胞化学技术中的双PAP法检测微量抗原
在复合物体系中连接更多的PAP复合物,来进一步放大抗原,从而使灵敏度更为增强,适用于检测微量抗原。实验方法: 将固定后的标本用PBS漂洗;2. 于室温下用1%H2O2或1%H2O2甲醇浸泡涂片10~20min,用来密封内源性过氧化物酶;3. PBS漂洗2次,每次3min;4. 在室温下用二抗的正常血
双酶切小技巧
A.任何时候2 种酶的总量不能超过反应体系的1/10体积。B.双酶切时如果两种酶反应温度一致而buffer不同时,可查阅内切酶供应商在目录后的附录中提供的各种酶在不同buffer中的活力表(也可以向ebiotrade.com客户服务部索取),如果有一种buffer能同时使2 种酶的活力都超过70
双荧光素酶验证
miR 和LncRNA/circRNA/mRNA 结合双荧光素酶验证方案 一、 检测原理全基因合成 miR 潜在结合位点上下游~500bp( LncRNA、circRNA 或 mRNA 的3’UTR)野生形式 WT 及结合位点的突变形式 Mut,克隆到 psiCHECK-2 多克隆位点处
酶免疫技术酶与底物
酶结合物是酶与抗原或者抗体、半抗原在交联剂作用下联结的产物,是 ELISA 成败的关键试剂。它不仅具有抗原抗体的特异性反应,还具有酶促反应的特性,最终产生生物放大的特性。酶免疫反应中,最常用的酶是辣根过氧化物酶,HRP的催化反应需要底物过氧化氢(H2O2)和供氢体(DH2)。供氢体多为无色的还原型染
温度对酶活性影响具有双重性指的是什么?
化学速度随温度升高而加快,酶反应也不例外。 Q10值即温度增加10℃,化学速度的变化率。酶的Q10值约在1.5~2.5。(温度每增加10℃,酶促反应速度增加1~2倍左右。) 当温度超过一定范围,反应速度下降,(酶蛋白变性)应选最适反应温度。 37℃是目前使用最广泛的 测定酶催化活性浓度的温
光镜下双/多重免疫标记实验——双重免疫荧光染色
实验步骤1. 古兹菲德-雅各氏病(CJD)病人的尸解脑组织,4% 中性甲醛固定,石蜡包埋,连续切片,厚 5 μm(贴片前的载玻片应预涂不含有荧光色素的黏合剂)。2. 常规脱蜡,水化。3. 抗原修复(柠槺酸盐缓冲液 pH 6.0 中,高压灭菌器加热 100℃,20 min)及 96% 甲酸孵育 2 m
免疫铁蛋白电镜技术
1.基本原理 铁蛋白的分子量460kD,为一种含铁(约占23%)的蛋白质。直径10―12nm。目前常用的间接免疫染色技术是应用低分子量的双功能试剂将第二抗体与铁蛋白相连,制备标记抗体。此复合物既保留了抗体的免疫活性,又因铁蛋白含有2000―3000个铁原子的致密铁离子核心,形成四个圆形致密区,所以
酶免疫技术中酶和酶作用底物
酶和酶作用底物(一)酶的要求: 一个酶蛋白分子每分钟可催化10 3 ~10 4 个底物分子转变成有色产物。用于标记的酶应符合:1.酶的活性要强,催化反应的转化率高,纯度高。2.酶催化底物后产生的产物易于判断或测量,方法简单易行、敏感和重复性好。3.作用专一性强 ,酶活性不受样品中其他成分的影响,受检
免疫酶技术中常用的酶底物系统
各种免疫酶技术,最终都是以某种显色反应而揭示待测物质来进行定性和定量分析。不同酶要选择相应的底物,见下表。免疫酶技术中常用的酶-底物系统酶底物显色反应测定波长/nm辣根过氧化物酶二氨基联苯胺深褐色沉淀5-氨基水杨酸棕色449邻苯二胺橘红色492/460邻联甲苯胺蓝色4254-硝基酚磷酸黄色400碱性
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
什么是双荧光素酶
荧光素酶(Luciferase)是催化莹光素氧合而发光的蛋白酶即[让萤火虫尾部荧光素发出荧光的蛋白质]莹光素+ATP+O2-->氧合莹光素+AMP+PPi+荧光
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣