利用低温AFM测量六方氮化硼表面气泡实现对氢元素的分离

6月27日,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室在《自然-通讯》杂志上在线发表了题为《利用等离子体处理将氢分离到六方氮化硼夹层气泡中》(Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment)的论文。该论文首次报道通过氢等离子体处理后的多层六方氮化硼(hBN)夹层中会捕获氢气并形成气泡,气泡大小可控且具有较高的热学和化学稳定性,具有进一步应用于微纳机电器件和储氢的潜力。 h-BN是一种具有极高热学和化学稳定性的宽带隙二维原子晶体。与石墨烯类似,单层h-BN具有六角蜂窝网状晶格结构和原子级平整的表面。多层h-BN的层与层之间依靠范德华力结合。上海微系统所研究人员发现如果将h-BN晶体置于氢气等离子体中处理,其表面会形成微米级大小可控的气泡。进一步测量发现h-BN晶体的层间堆叠形式以AA’方式为主,这种堆叠......阅读全文

利用低温AFM测量六方氮化硼表面气泡实现对氢元素的分离

  6月27日,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室在《自然-通讯》杂志上在线发表了题为《利用等离子体处理将氢分离到六方氮化硼夹层气泡中》(Isolating hydrogen in hexagonal boron nitride bubbles by a plasma t

原子力显微镜(AFM)概述

原子力显微镜(AFM)概述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是STM 的样品基本上要求为导体,同时表面必须非常平整, 而使STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力,所

原子力显微镜(AFM)综述

原子力显微镜(AFM)综述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是 STM 的样品基本上要求为导体,同时表面必须非常平整, 而使 STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力

原子力显微镜(AFM)分类

  在原子力显微镜(AFM)成像模式中,根据针尖与样品间作用力的不同性质可分为:接触模式,非接触模式,轻敲模式。  (1)接触成像模式:针尖在扫描过程中始终同样品表面接触。  针尖和样品间的相互作用力为接触原子间电子的库仑排斥力(其力大小为10-8~10-6N)。优点为图像稳定,分辨率高,缺点为由于

扫描原子力显微镜(AFM)

扫描原子力显微镜(AFM)可以对纳米薄膜进行形貌分析,分辨率可以达到几十纳米,比STM差,但适合导体和非导体样品,不适合纳米粉体的形貌分析。

如何激光检测原子力显微镜/AFM/AFM探针工作

二极管激光器发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检

什么是原子力显微镜(AFM)?

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构

原子力显微镜(AFM)的原理

原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动.利用光学

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样

原子力显微镜(AFM)的原理

原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原

原子力显微镜(AFM)的原理

原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原

原子力显微镜(AFM)应用举例

1, Lateral Force Microscopy 测量样品表面的摩擦力。2, 活体细胞测量3, chemical force microscopy 测量两个化合物之间的作用力。4, quantitative  nanomechanical 测量样品的形貌、模量、表面粘滞力、能量损失和形变量。5

原子力显微镜(AFM)之力检测部分

在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。

原子力显微镜(AFM)之纳米加工

扫描探针纳米加工技术是纳米科技的核心技术之一,其基本的原理是利用SPM的探针-样品纳米可控定位和运动及其相互作用对样品进行纳米加工操纵,常用的纳米加工技术包括:机械刻蚀、电致/场致刻蚀、浸润笔等。

激光检测原子力显微镜(AFM)原理

原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光

原子力显微镜(AFM)之接触模式

接触模式:从概念上来理解,接触模式是AFM最直接的成像模式。正如名字所描述的那样,AFM在整个扫描成像过程之中,探针针尖始终与样品表面保持紧密的接触,而相互作用力是排斥力。扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10-10~10-6N。若样品表面柔嫩而不能承受这样的力

原子力显微镜(AFM)的工作原理

原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的

原子力显微镜(AFM)之测试技巧

样品的预处理:在显微镜下看样品表面是否干净,平整,如果有污染或不平整,务必重新制样。虽然针尖能测试的有效高度为6微米,水平范围100微米。但事实上,水平和高度方面任接近何一个极限,所测得的图象效果将很差,且针尖很容易破坏和磨损。下针:在选好模式下针前,务必找到样品表面,调好焦距。扫描范围先设置为0,

原子力显微镜(AFM)之测试技巧

      样品的预处理:在显微镜下看样品表面是否干净,平整,如果有污染或不平整,务必重新制样。虽然针尖能测试的有效高度为6微米,水平范围100微米。但事实上,水平和高度方面任接近何一个极限,所测得的图象效果将很差,且针尖很容易破坏和磨损。     下针:在选好模式下针前,务必找到样品表面,调好焦距

原子力显微镜(AFM)之敲击模式

敲击模式:敲击模式介于接触模式和非接触模式之间,是一个杂化的概念。悬臂在试样表面上方以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品表面。这就意味着针尖接触样品时所产生的侧向力被明显地减小了。因此当检测柔嫩的样品时,AFM的敲击模式是最好的选择之一。一旦AFM开始对样品进行成像扫描,装置随即

原子力显微镜(AFM)三大模式

1)接触模式  在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,

原子力显微镜(AFM)之曲线测量

SFM除了形貌测量之外,还能测量力对探针-样品间距离的关系曲线Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。当微悬臂固定端被垂直接近,然后离开样品表面时,微悬臂和样品间产生了相对移动。而在这个过程中微悬臂自由端的探针也在接近、甚至压入样品表面,然后脱离,此时原子力显微镜(AFM)

散射式近场光学显微镜的特点及实际应用

   散射式近场光学显微镜建立在基于具有先进地位的纳米光学表征工具原子力显微镜AFM的基础之上。s-SNOM设计具有非常优秀的性能,高度集成,全面自动化,使用灵活,为研究生产力和易用性设定了新的标准。  特别适用于硬质材料,特别是具有高反射率、高介电常数或强光学共振的材料,可以完成对所有物质纳米尺度

原子力显微镜(AFM)之反馈系统

在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持合适的作用力。

原子力显微镜AFM的应用领域

  在材料科学领域,AFM不但可以获得材料表面的3D形貌、表面粗糙度和高度等信息,而且可以获得材料表面物理性质分布的差异,例如摩擦力、阻抗分布、电势分布、介电常数,压电特性、磁学性质等。图片来源于网络  在聚合物科学领域,AFM可以获得表面的结构以及材料表面物理性质。对样品进行加热,可以研究聚合物的

原子力显微镜(AFM)在光盘检测应用

    CD/DVD光盘具有存储量大、成本低、精度高和信息保存寿命长等特点,现已成为主要的数据储存介质。为了继续提高光盘容量及其质量,需要改善 盘片和模板表面质量的分析方法。原子力显微镜(AFM)可直接进行三维测量[1-2],能够在nm尺度上对CD/DVD及其模板上的信息位凹坑和凸台结构 进行直接观