4D组学新时代!更精确的磷酸化修饰组学

离子淌度分离概念的引入使得蛋白质组学进入了4D新时代。4D蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图1),进而大幅度的提高扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。更精确的磷酸化修饰组学磷酸化是研究最广泛的翻译后修饰类型,在多种生命活动的调控包括生物的生长发育、信号转导以及疾病进程等过程中发挥至关重要的功能。当下蛋白质组学研究正如火如荼地发展,随着技术的不断成熟,依赖于质谱的蛋白质磷酸化的检测,极大地推动了磷酸化蛋白质组学的发展。然而对于传统的质谱技术来说,磷酸化深度并精确的鉴定主要有两大挑战,1)生物样品中不同的磷酸化肽段丰度会呈现出几个数量级的差异,这需要更高的质谱扫描速度和灵敏度来鉴定到低丰度的磷酸化肽段;2)同一个肽段发生磷酸化位点......阅读全文

4D组学新时代!更精确的磷酸化修饰组学

离子淌度分离概念的引入使得蛋白质组学进入了4D新时代。4D蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图1),进而大幅度的提高扫描速度和检测灵敏度,带来蛋白

磷酸化修饰蛋白质组学共性关键技术研究获突破

近日,广东省农业科学院农业生物基因研究中心晏石娟团队联合加拿大约克大学、德国马普分子植物生理研究所等研究人员在磷酸化修饰蛋白质组学共性关键技术研发方面取得重大突破,首次搭建全自动在线磷酸化蛋白质组学分析技术平台,解决了磷酸化蛋白质组学研究的一大瓶颈。相关研究以农业生物基因研究中心为第一完成单位在线发

“空间定位组学”和“4D组学”建起科学研究与疾病治疗的桥梁

  分析测试百科网讯 布鲁克一直以MALDI技术闻名全球,并已在成像领域占据领导地位;自去年推出timsTOF Pro创新组学系统后,在深度覆盖和高通量蛋白质组学分析中取得了突破性的进展,并且迅速和国内院校和企业开展了一系列深度的合作。比如timsTOF系列,已和北京大学、清华大学、复旦大学、厦门大

磷酸化多肽及其修饰方法

  蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质

磷酸化多肽及其修饰方法

蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多

磷酸化多肽及其修饰方法

  蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质

磷酸化蛋白组学需要多少蛋白

蛋白质磷酸化发挥作用的途径:(信号传导)2. 真核细胞蛋白质磷酸化位点一般位于(丝氨酸)、(苏氨酸)、(赖氨酸)3. 蛋白激酶在细胞信号转导途径主要作用:(调节细胞活性)、(放大传导信号)4. 目前常用的磷酸肽富集方式(TiO2)、(IMAC)5. 磷酸化蛋白组定性分析包括(单一磷酸化位点鉴定)、(

磷酸化蛋白质组学研究获进展

中科院大连化物所生物技术部1809组封顺、叶明亮、邹汉法等人关于新型金属离子固定化亲和色谱固定相应用于磷酸化蛋白质组学的研究成果(Immobilized Zirconium Ion Affinity Chromatography for Specific Enrichment of Phosphop

鲁克在-timsTOF-4D蛋白质组学和表观蛋白质组学平台上扩展

  在蛋白质组论坛| EuPA 2022,布鲁克公司(纳斯达克股票代码:BRKR)宣布扩展了更深层次的蛋白质组学和表观蛋白质组学覆盖的能力,包括使用创新的 TIMScore 算法增强磷酸肽分析,该算法现在是基于 GPU 的新 PaSER 2022 平台的一部分。新的 TIMScore 算法利用机器学

多肽磷酸化修饰及检测方法

磷酸化影响着细胞生命的方方面面。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多肽的研究可以帮助人们阐述上述过程的机理,进一步认识生命活动的本质。肽谷生物依据自身原料优势和技

sumo化与磷酸化修饰联合分析

随着质谱技术的不断进步,大规模修饰组学的方法也越来越成熟,PTM作为生物体内非常重要的生理现象也逐步被揭示出参与各项生命活动。今天我们就一起来学习一篇运用质谱技术对磷酸化修饰和类泛素化修饰鉴定,找出两种修饰联合作用对在DNA复制损伤压力时的响应。该篇文献来自哥本哈根大学的研究人员于2017年10月发

颠覆认知,“质”的飞跃:Orbitrap-Astral革新修饰组学研究

  翻译后修饰(Post-translational modifications,PTMs)是指对翻译后的蛋白质进行共价加工的过程,在一个或多个氨基酸残基加上修饰基团,可以改变蛋白质的理化性质,进而影响蛋白质的空间构像、活性状态、亚细胞定位、折叠及其稳定性以及蛋白互作。  随着对一些疾病逝行深入的研

植物磷酸化蛋白质组学技术研发方面获进展

  蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷

细胞外囊泡中磷酸化蛋白质组学研究

蛋白磷酸化水平的变化可指针疾病的变化,但却鲜有磷酸化蛋白被开发成为疾病诊断标记物。细胞外囊泡是由膜封闭的微环境,不受外界蛋白酶和其他酶的影响。这使得细胞外囊泡在体液中高度稳定,为开发磷酸化蛋白应用于医学诊断提供了契机。今天为大家介绍一篇细胞外囊泡中磷酸化蛋白相关的文章:Phosphoproteins

用蛋白质组学方法绘制磷酸化位点图谱

方案1 用带有 Fe(Ⅲ) 和 Ga(Ⅲ)的 IMAC 纯化磷酸化多肽 方案2 在 MALDI 分析之前或之后对磷酸化多肽进行碱性磷酸酶处理 方案3 结合固定化金属离子亲和介质和 MALDI-TOF-MS 直接分析方法对磷酸化多肽进行特征分析实验 方

水生所蛋白质翻译后修饰组学研究获进展

  蛋白质的翻译后修饰,如磷酸化、乙酰化等,是调节蛋白质生物学功能的关键步骤,是蛋白质动态反应和相互作用的一个重要分子基础,也是细胞信号网络调控的重要靶点。由于翻译后修饰蛋白质在样本中含量低且动态范围广,其研究极具挑战性。近期,中国科学院水生生物研究所葛峰研究员学科组在蛋白质翻译后修饰组学及其功能方

新一代!4D蛋白质组学2019大事记

离子淌度分离的引入使得蛋白质组学进入了4D新时代。和常规的3D蛋白组相比,新一代的4D蛋白质组学充分利用了第四维离子淌度(ion mobility)的信息,实现了更加specific的匹配,在扩大检测深度的同时提高了准确性,独特的性能使其成为蛋白组学复杂样本深入研究的利器,使得许多其他科学问题与临床

景杰生物:蛋白质组学驱动精准医学技术先锋

  分析测试百科网讯,中国细胞生物学学会2021年全国学术大会于4月14日在重庆盛大开幕,作为国内蛋白质组学技术开发和应用引领者的景杰生物特装参会,备受行业关注。分析测试百科网采访了景杰生物市场经理邹文安先生和学术经理王涛博士,他们进一步为我们介绍了公司的特色、本届带来的产品,并描绘了公司未来的发展

表观遗传学修饰

组蛋白修饰 表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因

精确修饰位点谱图库的建立与磷酸化蛋白质组的-DIA-解析3

结果显示,从 DIA 数据中提取、定量到 6401 条可信的磷酸化肽,占谱图库磷酸化肽总数(6505 条)的 98.4%(图 5)。磷酸化肽的丰度和离子化效率普遍较低,本实验如此高的解析成功率表明,基于 Orbitrap 的 DIA 数据具有极高的谱图质量和出色的灵敏度。  图5. DIA可

精确修饰位点谱图库的建立与磷酸化蛋白质组的-DIA-解析1

引言 数据非依赖采集(Data-Independent Acquisition, DIA)是当前最热门的质谱采集技术之一,它以非目标的方式将质量范围分为若干窗口,依次并循环采集窗口内所有母离子的二级碎片[1,2]。DIA 与 SRM 类似,也是基于子离子(transition)定量,相比

精确修饰位点谱图库的建立与磷酸化蛋白质组的-DIA-解析2

2. 磷酸化样本的 DDA 鉴定、可信度筛选和谱图库建立磷酸化样本信息和色谱质谱参数见实验条件部分。3 针 DDA 数据按磷酸化检索流程使用 Proteome Discoverer 2.0 软件搜库鉴定(S/T/Y+79.966 Da),并使用 ptmRS 模块对位点打分(图 2-1)。搜库完成

布鲁克宣布将推进4D蛋白质组学和全新timsTOF-Pro™工作流程

  在EuPA 2019大会上,布鲁克公司发布的timsTOF Pro具有以下新功能:  1、具有出色的肽和蛋白质ID定量分析能力的DIA-PASEF技术。  2、timsTOF Pro能够完成生物制药中完整蛋白质分析的新工作流程。  3、下一代4D代谢组学的新工作流程,利用timsTOF Pro常

Nature:RNA-修饰研究有助表观转录组学进一步发展

  这是一个与 mRNA 结合的细菌核糖体的分子模式图,该核酸蛋白复合体正在合成蛋白质。  随着科研人员逐渐揭开 RNA 修饰的奥秘,帮助我们了解表观转录组学(epitranscriptomics)的工具也变得越来越多了。  2004 年,以色列特拉维夫大学(Tel Aviv University

质谱综述:上交大吕海涛首次定义精准修饰代谢组学新法

近日,上海交通大学吕海涛研究员再次受邀在组学与质谱学领域著名杂志《Mass Spectrometry Reviews》(中科院分区1区TOP级杂志,影响因子9.526)发表评论文章“Mass spectrometry and associated technologies delineate the

乌得勒支大学和布鲁克合作开发4D结构蛋白组学方法

Albert Heck 和Richard Scheltema团队与布鲁克共同推进PhoX交联剂和TIMS/PASEF技术联合增强交联质谱(XL-MS)研究  近日,布鲁克宣布与乌得勒支大学合作,共同推进质谱在蛋白质3D结构与相互作用方面的研究工作。在蛋白质组学、用质谱研究蛋白质结构和相互作用方面,合

布鲁克与合作伙伴联手打造前沿的4D蛋白质组学新方案

  * 布鲁克与Cellenion达成合作协议,将cellenONE®样品制备系统与 timsTOF SCP系统联用,实现全自动单细胞4D-蛋白质组学非标记工作流程;  * Seer的Proteograph™产品与timsTOF Pro 2和timsTOF SCP联合使用,可从人血浆样本鉴定超过30

790万!神外所4D高通量高深度蛋白质组学平台采购公告

项目概况  神外所4D高通量高深度蛋白质组学平台建设项目-3质谱仪采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台  网址:http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home获取招标文件,并于2023-08-11

timsTOF-Pro最新4D高通量超高灵敏度蛋白组学研究技术

  分析测试百科网讯 近日在第15届美国人类蛋白质组学年会上,布鲁克宣布了Evosep One低流速色谱与timsTOF Pro液质联用系统在高灵敏度、高通量血浆蛋白质组学方面取得的进展。布鲁克还重点介绍了PEAKS,Protein Metrics和MaxQuant 4D蛋白质组学软件的进展,这些软