蛋白纯化反相柱的选择
HP-RPC的选择首先要看蛋白质的分子量,20kDa左右的一般用C4或C8,再小一点的可以用C18,太大的蛋白并不适于反相分离。C18通用性最好,但是有时候保留过强可能会导致收率较低。如果目的蛋白不是很针对,可以考虑通用性最强的C18柱。一般来说,4.6mm的内径比较常见,250mm长的柱子比150mm的柱子分离度要好,无论对小肽还是蛋白都是这样。其次要注意填料的孔径,80A左右的填料主要是用于小分子的分析分离,对于蛋白这样的大分子,要用300A孔径的填料,可以避免分子扩散到填料内部的摩擦阻力,提高柱效。此外C载量来说,蛋白柱和一般的C18也是不一样的。Agilent, Waters,Vydac都有相关的成熟产品,最好能配备相应的保护柱。更小内径的柱子可以节省流动相,有些更适于甲酸等液质连用的情况。制备的话,还是考虑聚合物的制备级填料Source RPC比较好,可以NaOH CIP。Amersham也有ReSource的聚合物反......阅读全文
蛋白纯化反相柱的选择
HP-RPC的选择首先要看蛋白质的分子量,20kDa左右的一般用C4或C8,再小一点的可以用C18,太大的蛋白并不适于反相分离。C18通用性最好,但是有时候保留过强可能会导致收率较低。如果目的蛋白不是很针对,可以考虑通用性最强的C18柱。一般来说,4.6mm的内径比较常见,250mm长的柱子比150
蛋白纯化反相柱(reversed-phase-column)的选择
HP-RPC的选择首先要看蛋白质的分子量,20kDa左右的一般用C4或C8,再小一点的可以用C18,太大的蛋白并不适于反相分离。C18通用性最好,但是有时候保留过强可能会导致收率较低。如果目的蛋白不是很针对,可以考虑通用性最强的C18柱。一般来说,4.6mm的内径比较常见,250mm长的柱子比150
反相色谱柱的选择
1.柱子的PH值使用范围反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷
反相色谱柱的选择
反相色谱柱的选择: 1.柱子的PH值使用范围 反相色谱柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。 一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要
反相色谱色谱柱的选择
色谱柱是HPLC系统非常关键的一部分,随着色谱技术的发展,它也不断地更新换代,长度变得越来越短,填料颗粒也越来越细。现在常用的色谱柱长度在30~250 mm,颗粒直径在1.6~5μm。颗粒类型主要有全多孔和表面多孔,全多孔填料具有更大的柱容量、更多键合相选择的优点,表面多孔具有反压低、峰形好的优
【分享】蛋白纯化的方法选择
随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆
蛋白质纯化的选择方法
蛋白质纯化的选择方法随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是zui终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上
蛋白质纯化的选择方法
蛋白质纯化的选择方法随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是zui终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上
蛋白质纯化的方法选择
随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是zui终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆
蛋白质纯化的方法选择
1 蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重
蛋白质纯化的选择方法
蛋白质纯化的选择方法随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是zui终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上
蛋白质纯化的方法选择
随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下
反相色谱柱
反相色谱柱
蛋白质纯化的方法选择(一)
摘要 : 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分
蛋白质纯化的方法选择(二)
5 疏水作用层析疏水作用层析蛋白是由疏水性和亲水性氨基酸组成的。疏水性氨基酸位于蛋白空间结构的中心部位,远离表面的水分子。亲水性氨基酸残基则位于蛋白表面。由于亲水性氨基酸吸引了许多的水分子,所以通常情况下整个蛋白分子被水分子包围着,疏水性氨基酸不会暴露在外。在高盐浓度的环境中蛋白的疏水性区域则会暴露
蛋白过镍柱纯化的原理和步骤
Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境,我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太
蛋白过镍柱纯化的原理和步骤
Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境,我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太
反相键合相色谱仪色谱柱的选择要求
反相键合相色谱仪色谱柱的选择要求包括选择性合适、色谱峰形良好、重现性好和应用范围宽等。一、选择性合适:满足不同的分离要求。由于硅羟基的影响,许多情况下硅胶基质对整个键合相的性能起决定作用。内嵌极性基团键合相在使用高比例水溶液流动相时,色谱性能稳定。二、色谱峰形良好:满足定量精度、灵敏度和分离度要求。
反相键合相色谱仪色谱柱的选择要求
反相键合相色谱仪色谱柱的选择要求包括选择性合适、色谱峰形良好、重现性好和应用范围宽等。一、选择性合适: 满足不同的分离要求。 由于硅羟基的影响,许多情况下硅胶基质对整个键合相的性能起决定作用。内嵌极性基团键合相在使用高比例水溶液流动相时,色谱性能稳定。二、色谱峰形
镍柱纯化蛋白没有挂柱是什么原因
可能有多种原因导致 蛋白不挂柱子。例如:因为 His标签被包到了蛋白三维结构里面。镍介质无法接触His 标签;纯化工艺不利于结合作用发挥,例如咪唑;蛋白不稳定,标签掉落。
镍柱纯化蛋白没有挂柱是什么原因
可能有多种原因导致 蛋白不挂柱子。例如:因为 His标签被包到了蛋白三维结构里面。镍介质无法接触His 标签;纯化工艺不利于结合作用发挥,例如咪唑;蛋白不稳定,标签掉落。
蛋白质和多肽反相HPLC分析和纯化指南(十一)
HPLC-MS 联用的两个重要因素是电喷射接口的最佳流速及三氟乙酸对肽电离的影响 基本电喷雾接口的信号在5~10μL/min的流速区间上迅速下降(图28)。这与采用标准分析型HPLC柱的流速不相容。目前,商用电喷雾提供一种高剪切流氮气辅助的电喷雾(气流辅助电喷雾),它将电喷雾的最佳流速区间提升到了2
蛋白质和多肽反相HPLC分析和纯化指南(八)
肽图分析法 - 蛋白质和多肽反相HPLC分析和纯化指南反相高效液相色谱已成为蛋白质分析和表征的标准方法,尤其是治疗性药物的分析和表征。反相色谱分析法分辨率高,检测灵敏度好,能够提供大量关于蛋白质的信息。有些时候,蛋白质作为完整的分子分析,但更多的时候采用蛋白水解酶作用于特殊的氨基酸残基将碳骨架断开,
蛋白质和多肽反相HPLC分析和纯化指南(十六)
选择合适的色谱柱微粒。通过与柱内填充微粒疏水表面的相互作用实现蛋白质与多肽的分离。柱内填充粒通常以硅胶为基础,这是因为硅胶的稳定性高,能够在大多数溶剂条件下(除了pH大于6.5的情况)保持稳定,此外,硅胶可以形成各种大小的具有不同直径的多孔球形颗粒。硅胶纯度。高效液相色谱柱所用硅胶填料的纯度对分离性
蛋白质和多肽反相HPLC分析和纯化指南(十五)
其它离子对试剂。尽管目前为止TFA仍是最常用的离子对试剂,但蛋白质/多肽分离有时会采用磷酸和七氟丁酸(HFBA)等其它试剂。 如图18所示,一些情况下,磷酸可分离一些TFA无法分离的多肽。通常磷酸盐使用浓度约为20-30 mM,pH为2~2.5。此外,磷酸盐缓冲液对一些蛋白质的分离效果要优于TFA。
蛋白质和多肽反相HPLC分析和纯化指南(七)
在氧化环境条件下,尽管蛋白质的几个氨基酸都可能受影响,但最有可能被氧化的氨基酸是甲硫氨酸;甲硫氨酸可被氧化成甲硫氨酸亚砜(图34)。对甲硫氨酸残基的氧化取决于其在蛋白质中的位置。埋藏在蛋白质内部的甲硫氨酸不可能被氧化。接近表面且与溶剂接触的甲硫氨酸侧链最有可能被氧化。氧化条件包括热、过渡金属的存在以
蛋白质和多肽反相HPLC分析和纯化指南(三)
蛋白质纯化RP-HPLC 是一种有效的蛋白质/多肽纯化工具。通过 RP-HPLC 法可以从杂质中分离目标蛋白/多肽,采集到的片段可用于进一步研究,以及借助正交分析技术的分析,甚至可作为治疗药物。在蛋白质/多肽分析过程中,色谱条件优化的目标是优化分辨率和保留时间。制备色谱法分离蛋白质/多肽时,色谱条件
蛋白质和多肽反相HPLC分析和纯化指南(二)
色谱分析色谱技术已发展成一种强大的分离技术,能够分离大量蛋白质和多肽。但任何一种单独的色谱技术仍然只能分离出一小段蛋白质。因此,多种色谱技术的结合使用已成为蛋白质组分析中蛋白质分离的一种普遍方法。二维色谱在长期的蛋白质纯化模式的基础上,John Yates和同事开发了一种名为多维蛋白质鉴定技术(Mu
蛋白质和多肽反相HPLC分析和纯化指南(九)
胰蛋白酶水解分析。蛋白质水解产生的肽段利用反相高效液相色谱分析,流动相采用含TFA体系(参见第15-17页),以起始浓度约5%的乙腈梯度洗脱(乙腈起始浓度低于5%可能导致较早洗脱出肽的色谱的不可重现性),乙腈浓度逐渐升至70%(参见图31)。梯度洗脱的时间取决于待水解蛋白的大小。大分子蛋白比小分子蛋
蛋白质和多肽反相HPLC分析和纯化指南(十二)
蛋白质/多肽液相分析中的流动相选择有机溶剂可将吸附在疏水界面的蛋白质洗脱(图14)。在梯度洗脱期间,当有机溶剂量达到针对每一蛋白质的特定浓度时,蛋白质就会从疏水界面上解吸,继续顺着柱向下,从而从柱中洗脱。图14. 当有机改性剂的浓度达到特定值时,蛋白质从疏水界面洗脱。乙腈。在多肽的反相色谱分离时最常