铁磁金属/拓扑绝缘体异质结中自旋流电荷流转换效率

自旋流的产生、操作和探测是自旋电子学研究的最基本问题,其中一个关键目标是在室温以上实现电荷流-自旋流的高效转换。电荷流-自旋流转换效率与材料中的自旋-轨道耦合密切相关,通过逆自旋霍尔效应(Inverse Spin Hall effect)和逆埃德尔施泰因效应(Inverse Edelstein effect)可实现自旋流-电荷流的高效转换。 由于拓扑绝缘体中存在强自旋-轨道耦合,从而导致“自旋-动量锁定”狄拉克表面态的形成。当三维自旋流从相邻铁磁层注入到具有自旋手性结构的狄拉克表面时,通过逆埃德尔施泰因效应产生二维电荷流。自旋流-电荷流的转换效率等于狄拉克费米子的费米速度和自旋-动量散射时间的乘积,即\(\lambda_{\mathrm{IEEE}}(T I)=j_{c}^{2 D} / j_{S}^{3 D}=v_{F} \tau_{S}\)。除拓扑表面态外,二维电子气(2DEG)的Rashba效应也可以导致自旋劈裂,从......阅读全文

铁磁金属/拓扑绝缘体异质结中自旋流电荷流转换效率

  自旋流的产生、操作和探测是自旋电子学研究的最基本问题,其中一个关键目标是在室温以上实现电荷流-自旋流的高效转换。电荷流-自旋流转换效率与材料中的自旋-轨道耦合密切相关,通过逆自旋霍尔效应(Inverse Spin Hall effect)和逆埃德尔施泰因效应(Inverse Edelstein

物理所预言一种新类型的拓扑绝缘体和量子自旋霍尔效应

  日前,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)孙庆丰和谢心澄研究员在铁磁石墨烯体系中预言了一种新类型的拓扑绝缘体和量子自旋霍尔效应【PRL,104,066805(2010)】。  近几年来,一种全新的量子物质态――拓扑绝缘体已蓬勃兴起。与传统的绝缘体比较,拓扑绝缘体有

陈绝缘体内或存在拓扑激子

激子(e)及其空穴(h)相互环绕(艺术图)。图片来源:俄克拉荷马大学科技日报北京8月28日电(记者刘霞)美国俄克拉荷马大学凝聚态物理学家发表论文称,陈绝缘体内或许存在一种新型激子——拓扑激子,这些激子有望催生新型量子器件。相关论文发表于最新一期《美国国家科学院院刊》。当电子吸收光并跃迁到更高能级或能

陈绝缘体内或存在拓扑激子

  美国俄克拉荷马大学凝聚态物理学家发表论文称,陈绝缘体内或许存在一种新型激子——拓扑激子,这些激子有望催生新型量子器件。相关论文发表于最新一期《美国国家科学院院刊》。  当电子吸收光并跃迁到更高能级或能带时,受激电子会在其先前的能带中留下一个“电子空穴”。由于电子带负电荷而空穴带正电荷,两者会通过

新发现:拓扑晶体的绝缘体态

  拓扑晶体绝缘体(TCI)是一类受晶体对称性保护的非平庸拓扑态。在保持时间反演对称性的体系中,理论上已预言了三种类型的TCI,分别受到镜面、滑移面和旋转对称性保护。角分辨光电子能谱(ARPES)实验已证实了镜面对称性保护TCI材料SnTe,并在KHgSb中观测到滑移面保护TCI态的部分实验证据。2

物理所发现基于新型磁子结YIG/NiO/YIG的磁子阀效应

  磁子型器件有望构成继基于电荷流的第一大类半导体/微电子器件和基于自旋极化电流的第二大类自旋极化电子器件之后的基于磁子流的第三大类固态磁子型器件,有望为未来信息科学和技术的可持续发展带来更加广阔的发展空间。  从物理角度上讲,除了电子这一自旋的载体,其它中子、磁子等粒子或者准粒子也可以携带自旋角动

Nature子刊:自旋极化STM等对量子材料中自旋流的原位探测

  近日,北京大学量子材料科学中心韩伟研究员、谢心澄院士和日本理化学研究所Sadamichi Maekawa教授受邀在国际著名刊物 Nature Materials (《自然-材料》)撰写综述文章,介绍“自旋流-新颖量子材料的灵敏探针”这一新兴领域的前沿进展。  自旋电子学起源于巨磁阻效应的发现,在

拓扑绝缘体内奇异量子效应室温下首现

科技日报北京10月27日电 (记者刘霞)据《自然·材料》杂志10月封面文章,美国科学家在研究一种铋基拓扑材料时,首次在室温下观察到了拓扑绝缘体内的独特量子效应,有望为下一代量子技术,如能效更高的自旋电子技术的发展奠定基础,也将加速更高效且更“绿色”量子材料的研发。 拓扑绝缘体是一种特殊的材料,内

首次在磁性拓扑绝缘体中观测到清晰的拓扑表面态

  近十几年来,拓扑绝缘体已经成为凝聚态物理领域的一个重要研究方向。对于Z2拓扑绝缘体,其拓扑性质受到时间反演对称性的保护。如果将Z2拓扑绝缘体的时间反演对称性破坏,会形成一类新的拓扑态,即磁性拓扑绝缘体。磁性拓扑绝缘体可以表现出一系列新奇的物理性质,例如量子反常霍尔效应、手性马约拉纳费米子、轴子绝

拓扑绝缘体量子输运性质研究取得进展

电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修正可

拓扑绝缘体量子输运性质研究取得进展

  电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修

二维拓扑绝缘体研究获进展

  理论研究表明,具有蜂窝状晶格结构的薄膜是二维拓扑绝缘体的重要平台,也是实现量子自旋霍尔效应的理想材料。该体系独特的晶格结构使其在布里渊区的K点处产生狄拉克锥型能带结构,如石墨烯。由于碳元素的自旋轨道耦合强度低,石墨烯难以在狄拉克点处打开能隙,从而实现量子自旋霍尔效应。相比之下,碲元素因强自旋轨道

科学家实现新型声学拓扑绝缘体

  近日,中国科学院声学研究所噪声与振动重点实验室副研究员贾晗与华中科技大学物理学院副教授祝雪丰等合作的研究“反常弗洛奎型声学拓扑绝缘体的实验论证”在《自然—通讯》上在线发表。  拓扑绝缘体是一类不同于金属和绝缘体的全新物态,其内部为绝缘体但表面却能导电,且该表面导电性源自材料的内禀性质,不受杂质和

拓扑绝缘体的实验研究获系列进展

  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室马旭村研究员领导的研究组与清华大学物理系薛其坤教授领导的研究组合作,在三维拓扑绝缘体薄膜的外延生长、电子结构及有限尺寸效应方面进行研究,取得一系列进展。     拓扑绝缘体是最近几年发现的一种新的物质形态。

首个光学拓扑绝缘体研制成功

  据物理学家组织网近日报道,以色列和德国科学家携手合作,成功研制出首个光学拓扑绝缘体,这种新设备通过一种独特的“波导”网格,为光的传输护航,可减少传输过程中的散射。科学家们表示,最新研究对光学工业的发展大有裨益。研究发表在最新一期的《自然》杂志上。   随着计算机的运行速度不断加快以及芯片变得越

科学家首次观测到超冷原子气体中的对流超流相

中国科学技术大学潘建伟、苑震生、邓友金等与合作者,在超冷原子量子模拟实验中首次观测到对流超流相这一新奇量子物态,证实了对流的双组分超流体共同形成绝缘体的特性。近期,相关研究成果发表在《自然-物理学》(Nature Physics)上。20世纪30年代,卡皮查、艾伦和迈斯纳等在液氦中发现超流现象,推动

科学家首次观测到超冷原子气体中的对流超流相

中国科学技术大学潘建伟、苑震生、邓友金等与合作者,在超冷原子量子模拟实验中首次观测到对流超流相这一新奇量子物态,证实了对流的双组分超流体共同形成绝缘体的特性。近期,相关研究成果发表在《自然-物理学》(Nature Physics)上。20世纪30年代,卡皮查、艾伦和迈斯纳等在液氦中发现超流现象,推动

自然界中存在天然形成的拓扑绝缘体

  据《自然》网站3月8日报道,最近,德国马克斯·普朗克研究院固体研究所科学家发现,自然界中也存在天然形成的拓扑绝缘体,而且比人工合成的更纯净。这一发现对建造自旋电子设备具有促进作用,并有助于设计开发用电子自旋来编码信息的量子计算机。研究结果发表在最近出版的《纳米快报》上。   拓扑绝缘体是一种奇

光子拓扑自旋态研究新成果拓展光的拓扑学研究范畴

  拓扑缺陷在物理学上通常指场分布无法连续形变、物理量无法定义的特殊点,也称为奇点,在涡旋或拓扑结构中普遍存在。拓扑缺陷在宇宙学、流体动力学、空气动力学、声学以及生物学等领域也十分常见,并在某些应用中起着重要作用。  近年来,探索拓扑结构的电磁类比在光学和光子学中引起了极大兴趣。在集成光子学领域,微

铁磁绝缘体中磁子输运性质的全电学方法研究获进展

  磁性存储和磁逻辑等自旋电子学器件的核心在于自旋信息的传递,特别是自旋信息的产生、操控和探测是自旋电子学领域的一个基本问题。现有的自旋电子学中自旋信息主要依赖金属中的传导电子,一个非常有趣的问题是,是否有其他粒子甚至是准粒子可以作为自旋信息的载体?作为铁磁体中低能激发态的准粒子——磁子,是一种玻色

半导体所等在拓扑绝缘体研究中获进展

  拓扑绝缘体是目前凝聚态物理的前沿热点问题之一。它具有独特的电子结构,它在体内能带存在能隙,表现出绝缘体的行为;表面或边界的能带是线性的无能隙的Dirac锥能谱,因而是金属态。这种量子物态展现出丰富而新奇的物性,如量子自旋霍尔效应、磁电耦合、量子反常霍尔效应等。由于这种新奇的物性源

物理所在大能隙二维拓扑绝缘体ZrTe5中观测到拓扑边界态

  众所周知,二维拓扑绝缘体的体内是绝缘的,而其边界是无能隙的金属导电态。且这种金属态中存在自旋-动量的锁定关系,相反自旋的电子向相反的方向运动,由于受到时间反演不变性的保护,它们之间的散射是禁止的,因此是自旋输运的理想“双向车道”高速公路,可用于新型低能耗高性能自旋电子器件。当前实验已经确定具有量

科学家实现声二阶拓扑绝缘体

  日前,南京大学教授卢明辉、陈延峰团队与苏州大学教授蒋建华团队合作,在声子晶体中发现二阶拓扑相和多维拓扑相变,相关研究成果近日在线发表于《自然-物理》。  研究人员在空气声系统中首次观测到不同空间维度的拓扑相变,并利用多维度的拓扑相和拓扑相变实现了二阶拓扑绝缘体,揭示了高阶拓扑相形成的新机制。  

单元素二维拓扑绝缘体锗烯面世

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500858.shtm荷兰科学家研制出了首个由单元素组成的二维(2D)拓扑绝缘体锗烯,其仅由锗原子组成,还具有在“开”和“关”状态之间切换的独特能力,这一点类似晶体管,有望催生更节能的电子产品。相关研究刊发

拓扑绝缘体中电流的高效转换机制被发现

  意大利国家研究委员会微电子与微系统研究所(CNR-IMM)开展了一项研究,发现在硅衬底上拓扑生长的绝缘体——碲化锑(Sb2Te3)中,纯自旋电流和“传统”电流之间的转换效率很高。相关成果发表在《Advanced Functional Materials》《Advanced Materials I

物理所合作发现二维电子液体的自旋流电流转换效应

  自旋电子学可能导致面向未来的新一代信息技术。自旋流的产生、调控以及自旋流-电流的转换是自旋电子学研究的核心问题。具有Rashba 形式自旋-轨道耦合的二维电子体系为自旋流的高效调控提供了新机遇。对于二维电子体系,V. M. Edelstein 预言存在一种新物理效应,即Edelstein效应:与

物理所预言硅烯中的量子自旋霍尔效应

  最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)姚裕贵研究员以及博士生刘铖铖、冯万祥采用第一性原理,系统地研究了硅烯的晶体结构、稳定性、能带拓扑和自旋轨道耦合打开的能隙,预言了在硅烯中可以实现量子自旋霍尔效应。     近几年来,拓扑绝缘体的研究在世界范围内飞速发展,并成为凝聚态物理研

拓扑晶态绝缘体碲化锡纳米线研究获得新进展

  拓扑绝缘体(Topological Insulator)是一种新奇的物质状态,它的体相是绝缘态而表面却是零带隙的金属态。尤其它的表面是受拓扑保护的导电态,不受非磁性杂质和晶体缺陷的干扰,因而在无损耗的量子计算和新奇的自旋电子器件等领域具有重要的应用价值。时间反演对称性保护的三维拓扑绝缘体如B

物理所预言新型二维大能隙拓扑绝缘体

  众所周知,二维拓扑绝缘体的体内是绝缘的,而其边界是无能隙的金属导电态。且这种金属态中存在自旋-动量的锁定关系,相反自旋的电子向相反的方向运动,由于受到时间反演不变性的保护,它们之间的散射是禁止的,因此是自旋输运的理想“双向车道”高速公路,可用于新型低能耗高性能自旋电子器件。当前实验证实的二维拓扑

中国科大等在二维材料拓扑态研究领域取得系列进展

  中国科学技术大学教授乔振华课题组与国内外同行合作,在二维体系拓扑量子态的理论研究方面取得系列进展。相关成果发表在《自然-纳米技术》、《物理评论快报》和《物理学进展报告》上。  量子反常霍尔效应(即零磁场条件下量子霍尔效应)自石墨烯和拓扑绝缘体发现以来受到了凝聚态物理和材料科学领域的广泛关注,并且