国际合作研究深度学习与物理研究交叉领域取得新进展

复旦大学高分子科学系张红东课题组李剑锋副教授与加拿大滑铁泸大学陈征宇教授合作,在深度学习与物理研究交叉领域取得新进展,提出了一种全新的概念表征方法。近日,研究成果以《用强关联神经网络进行结构预测与反向设计》(“Structural Prediction and Inverse Design by a Strongly Correlated Neural Network”)为题发表于《物理评论快报》(Physical Review Letters 123, 108002)。将深度学习或神经网络运用于研究自然语言或其它学科时,首先需要对涉及的一些概念(词或物理实体)进行恰当的、充分地表征。过去,人们大多采用静态热点表征(One-Hot Encoding)或向量表征(Vector Representation),此两种表征方式虽可描述概念的特征,却不能反映环境对其属性之影响,亦不能体现概念的功能。“我常在想,大脑是不是......阅读全文

国际合作研究-深度学习与物理研究交叉领域取得新进展

复旦大学高分子科学系张红东课题组李剑锋副教授与加拿大滑铁泸大学陈征宇教授合作,在深度学习与物理研究交叉领域取得新进展,提出了一种全新的概念表征方法。近日,研究成果以《用强关联神经网络进行结构预测与反向设计》(“Structural Prediction and Inverse Design by

深度学习在雷达中的研究综述(一)

深度学习在雷达中的研究综述王俊, 郑彤, 雷鹏, 魏少明    摘要:雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过

深度学习在雷达中的研究综述(二)

其中, J(w,b) 为对应自编码器代价函数, β 为控制系数性惩罚因子权重。2.3 DBN基本原理DBN是一个概率生成模型,其建立一个观测数据与标签之间的联合分布。并且DBN由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成,典型的DBN结构如图4所示。

深度学习在雷达中的研究综述(三)

3.2 基于SAE的SAR图像处理研究SAE的特点是可自动从无标记数据中学习特征,并且给出比原始数据更好的特征描述,进一步通过该学习到的特征得到更好的分类效果。有学者将其应用于地物目标分类、舰船分类以及城市变化检测等场景。并且通过SAE对SAR图像进行分析,其与传统方法相比,展现SAE具有自动学习高

基于深度学习的时间序列预测研究获进展

  时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网络信息中心人工智能团队围绕上述挑战开展研究,提出一系列创新算法与模型,并在实际系统部署应用。  

研究团队在深度学习泛化能力研究中获进展

  近日,中国科学院沈阳自动化研究所机器人学国家重点实验室在深度学习泛化能力研究中取得进展,相关研究成果Depth selection for deep ReLU nets in feature extraction and generalization为题,发表在IEEE Transactions

深度学习算法“解密”脑活动

  英国《自然·医学》杂志9月25日在线发表的一项研究,报告了一种可以分析四肢瘫痪患者大脑活动的深度学习算法。该算法已被用于向患者的前臂肌肉传递电刺激,从而恢复瘫痪肢体的功能性运动。  慢性瘫痪患者的生活质量可以通过脑机接口加以改善。脑机接口可以将控制运动的中枢神经系统回路和辅助设备(例如计算机光标

AI侦探敲碎深度学习黑箱

  研究人员创建了能填补照片空白的神经网络,以鉴别人工智能瑕疵。  Jason Yosinski坐在美国加州旧金山的一个小型玻璃办公室内,陷入了对人工智能的沉思。作为优步公司的研究科学家,Yosinski正为在笔记本电脑上运行的人工智能(AI)进行“脑外科手术”。  很多AI将改变人类现代生活,例如

美国IBM研究院实现深度学习性能突破

   美国IBM研究院近日宣布,通过全新的分布式深度学习软件,实现了接近理想的扩展能力,该软件在64台IBM Power系统服务器中的256个GPU上并行运行深度学习框架,实现了95%的扩展效率,并使运算速度与准确率得到了显著提升。此前最佳的系统扩展能力是Facebook人工智能研究院所取得的89%

深度学习驱动大气降尺度技术研究取得进展

在全球气候变化研究中,将低分辨率的大尺度气候模式数据转化为高分辨率区域数据,是准确评估极端天气与区域微气候的关键。然而,现有主流国际工具普遍受限于固定尺度约束。近日,中国科学院南海海洋研究所等团队,研发出一种基于隐式神经网络混合专家模型(MINet)的大气降尺度新方法。团队通过多尺度隐式特征构建,和

深度学习驱动大气降尺度技术研究取得进展

在全球气候变化研究中,将低分辨率的大尺度气候模式数据转化为高分辨率区域数据,是准确评估极端天气与区域微气候的关键。然而,现有主流国际工具普遍受限于固定尺度约束。近日,中国科学院南海海洋研究所等团队,研发出一种基于隐式神经网络混合专家模型(MINet)的大气降尺度新方法。团队通过多尺度隐式特征构建,和

物理所王磊等发布深度学习算法-稠密氢体系应用成功

氢是宇宙中最丰富的元素,也是元素周期表中最简单的元素。在常温常压下,氢以气态分子的形式存在。然而,在一些极端的条件下,例如巨行星内核、聚变实验中,稠密的氢(或其同位素)表现出更加丰富的相图,其中可能包含原子液体、金属氢、高温超导、液态超导等。稠密氢中包含等量的质子和电子,是一个简单干净的量子多体系统

量子物理与机器学习结合研究取得进展

  生成模型(Generative Model)是机器学习领域的重要课题和研究前沿,也被认为是通往人工智能的必由之路。历史上,物理学为生成型学习提供了很多新思路。比如,著名的玻尔兹曼机(Boltzmann Machine)就来自于统计物理中的伊辛模型及相关的反伊辛问题。最近,中国科学院物理研究所/北

研究人员基于深度学习无创获得血液输入函数

全面量化大脑PET图像,常常需要精确的血流输入函数。然而传统方法中,获取这一函数通常依赖于侵入性且耗时的动脉导管采血,这在临床实践中往往难以实现。7月2日,中国科学院深圳先进技术研究院副研究员孙涛团队与河南省人民医院副院长王梅云团队合作,在医学影像顶级期刊《IEEE医学影像汇刊》发表最新研究。研究团

新疆理化所在深度学习预测抗癌多肽研究中取得进展

  癌症是人类健康最致命的杀手,在全球范围内每年造成数百万人的死亡。传统的物理和化学方法,包括靶向治疗、化疗和放射治疗等医疗实践中常见的治疗手段,在一定程度上能杀死病变癌细胞,但是同时也会杀死大量正常的细胞,带来严重的副作用。这些治疗手段费用昂贵且预后效果不佳,迫切需要开发新的定向清除癌细胞,治疗癌

深度学习技术及应用国家工程研究中心正式揭牌

《中国科学报》近日获悉,经国家发展和改革委员会批复,深度学习技术及应用国家工程研究中心(以下简称工程研究中心) 纳入新序列管理。4月26日,工程研究中心举行了揭牌仪式。 揭牌仪式  图片来源:工程研究中心 纳入新序列管理后,工程研究

深度学习技术及应用国家工程研究中心正式揭牌

《中国科学报》近日获悉,经国家发展和改革委员会批复,深度学习技术及应用国家工程研究中心(以下简称工程研究中心) 纳入新序列管理。4月26日,工程研究中心举行了揭牌仪式。 揭牌仪式  图片来源:工程研究中心 纳入新序列管理后,工程研究

TPU将成深度学习的未来?(一)

在Google I/O 2016的主题演讲进入尾声时,谷歌的CEO皮采提到了一项他们这段时间在AI和机器学习上取得的成果,一款叫做Tensor Processing Unit(张量处理单元)的处理器,简称TPU。在这个月看来,第一代的TPU处理器已经过时。在昨天凌晨举行的谷歌I/O 2017

TPU将成深度学习的未来?(二)

能够进行数据推理的第二代TPU第一代的TPU只能用于深度学习的第一阶段,而新版则能让神经网络对数据做出推论。谷歌大脑研究团队主管Jeff Dean表示:“我预计我们将更多的使用这些TPU来进行人工智能培训,让我们的实验周期变得更加快速。”“在设计第一代TPU产品的时候,我们已经建立了一个相对

深度学习算法准确追踪动物运动

  根据英国《自然·神经科学》杂志8月21日在线发表的一项研究,美国哈佛大学团队运用一种新型深度学习算法,成功追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。专家认为,这一成果打开了海量的数据来源之门。  准确追踪行为发生期间的身体运动部位是运动科学的一项重要

深度学习协助预测厄尔尼诺-|《自然》论文

  《自然》发表的一篇论文Deep learning for multi-year ENSO forecasts报道了一种可以提前一年半预测厄尔尼诺事件的深度学习方法,克服了该领域内长期存在的一项挑战。用来预测厄尔尼诺现象的CNN预测系统来源: Ham et al.  厄尔尼诺事件发生于太平洋东部和

计算成像可解释性深度学习重建方法研究取得进展

  傅里叶叠层成像是一种新兴的计算成像技术,其成像的正向模型包括光瞳函数的低通滤波、光瞳在频域内的扫描采样、傅里叶变换和复杂的成像噪声污染。传统基于深度神经网络学习(如卷积神经网络)方法在远距离场景下,环境噪声干扰更为复杂,高分辨率图像重建难度显著增加。  中国科学院西安光学精密机械研究所科研团队提

新光学芯片可实现高效“深度学习”

  美国麻省理工学院(MIT)科学家在12日出版的《自然·光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。  “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中

人工智能进入“深度学习+”阶段

  虽然从底层技术看,ChatGPT并不算创新,但其社会影响远远超出了预期。这款由美国人工智能公司OpenAI开发的聊天机器人,2022年11月推出后火遍全球,成为史上增长最快的消费者应用程序。  让机器和真人自由对话,一直是人工智能领域的重要目标之一。ChatGPT的爆火背后,其实是深度学习技术的

深度学习复兴:向人工智能迈进

  它是未来的一部分,我们才刚刚开始。图片来源:BRUCE ROLFF   3年前,美国加利福尼亚州山景城神秘的谷歌X实验室的研究人员从YouTube视频中提取了1000万个静态图像,并将其输入“谷歌大脑”——由1000台计算机构成的网络,从而试图像一个蹒跚学步的孩子一样吸收这个世界的信息。经过3

新光学芯片可实现高效“深度学习”

  美国麻省理工学院(MIT)科学家在12日出版的《自然·光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。  “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中

利用深度学习对短文本产品名称分类的研究

一、研究背景  在数字化浪潮的冲击下,基于产品质量安全监管的信息化基础,运用大数据、自然语言处理、机器学习等技术,让信息横向在不同区域间、纵向在各级市场监管部门流通,是一个有重要意义且需要我们在业务支撑工作中不断思考的议题。  为了实现数据赋能,一方面要实现数据的持续有效汇集,另一方面要加强数据分析

深度学习模型成功识别胚胎发育过程

  英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。 

人脸检测发展:从VJ到深度学习(六)

  还有一种比较典型的结构是树形的级联结构,从形状上来看其和金字塔式的级联结构是一样的,也是从上往下分类器的数目逐层增多,区别就在于树形的级联结构中没有同一层分类器之间的横向连接,只有相邻层分类器之间的纵向连接,即一个窗口在同一层上不会由多个分类器进行分类,而会直接被送往下一层或者被排除。树

深度学习框架可预测锂电池寿命

  近日,华东理工大学机械与动力工程学院、先进电池系统与安全重点实验室教授栾伟玲课题组与国家级高层次人才、华东理工大学讲席教授陈浩峰合作,在全球交通科学与技术领域期刊《交通电动化》发表论文,首次提出用于锂电池寿命预测相关的可解释性深度学习框架。  在锂电池寿命预测领域,建立全面的电池老化模型是项艰巨