继氢键之后,国人再次首获分子氢晶体学信息

据预测,氢分子具有奇异的物理特性和两组分(电子和质子)超导超流体冷凝物的拓扑结构。因此,了解这种转变仍然是凝聚态物理学中的重要目标。但是,由于在极端条件下进行X射线和中子衍射测量涉及相当大的技术挑战,因此对于大多数高压相,缺乏提供有关压缩状态下氢金属化的关键信息。 最近,北京高压科学研究中心毛河光团队在Nature在线发表题为”Ultrahigh-pressure isostructural electronic transitions in hydrogen“的研究论文,固态氢在高达254GPa的压力下进行了单晶X射线衍射研究,揭示了从I相到III相和IV相的转变的晶体学性质。总之,通过克服一系列障碍,室温下H2的SXRD研究压力范围翻了一番,达到254 GPa,涵盖了I,III和IV相。 SXRD数据表明,H2中的这些高压转变不是由hcp结构的主要晶体学变化引起的,并且除了c / a比严重变形(各向异性增加)以外,其余......阅读全文

晶体,准晶体,非晶体X一射线衍射实验的区别

晶体,准晶体,非晶体这三种物质,如果仅用肉眼是难以分辨的。固体物质是否为晶体,一般用X射线衍射法予以鉴定。晶体会对X射线发生衍射,非晶体不会对X射线发生衍射。可以通过有无衍射现象来区分晶体和非晶体。至于准晶体,它是一种介于晶体和非晶体之间的固体。用X光对固体进行结构分析,它和晶体、非晶体的结构截然不

晶体,准晶体,非晶体X一射线衍射实验的区别

晶体,准晶体,非晶体这三种物质,如果仅用肉眼是难以分辨的。固体物质是否为晶体,一般用X射线衍射法予以鉴定。晶体会对X射线发生衍射,非晶体不会对X射线发生衍射。可以通过有无衍射现象来区分晶体和非晶体。至于准晶体,它是一种介于晶体和非晶体之间的固体。用X光对固体进行结构分析,它和晶体、非晶体的结构截然不

X射线单晶体衍射仪

X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出

自动X射线晶体定向仪

  X射线自动定向仪是根据市场对晶体角度测量越来越高的精度要求而推出的手动定向仪的升级产品,它是利用X射线衍射原理,设计制造的光,机,电三为一体精密仪器,能快速地测定天然和人造晶体(压电晶体、光学晶体、激光晶体、半导体晶体)的晶面,可与各种切割、研磨等加工设备配套使用。是精密加工制造晶体器件不可缺少

X射线晶体衍射学的概述

  X射线望远镜光学系统一般采用沃尔特Ⅰ型──抛物面焦点与双曲面的后焦点重合的同轴光学系统。其焦平面通过双曲面的前焦点。按照制作工艺来划分,X射线望远镜的研制已经历三代。第一代镜面是铝制的,效率为1%,1963年用这种望远镜拍摄到分辨率为几角分的照片,可看出太阳上存在着X射线发射区。第二代镜面是在光

X射线晶体定向衍射历史介绍

射线晶体衍射是人们了解原子世界的利器,这一技术为人们解析了大量的重要生物学结构。今年是这一技术的百年诞辰,本期Nature杂志以特刊形式,介绍了X射线晶体衍射的过去、现在和将来。1914年,德国科学家Max von Laue因为发现晶体中的X射线衍射现象,获得了诺贝尔物理学奖,这一发现直接催生了X射

x射线单晶体衍射仪

  X射线单晶体衍射仪X射线单晶体衍射仪(X-ray single crystal diffractometer,简写为XRD)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解

X射线晶体光谱仪的简介

中文名称X射线晶体光谱仪英文名称X-ray crystal spectrometer定  义利用晶体作分光器的X射线光谱仪。晶体具有适当的点阵间隔,对一定波长的X射线产生衍射作用,可起到类似于光学式分析仪器中衍射光栅的作用。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱

X射线晶体学的研究步骤

①蛋白或DNA样品纯化②结晶③衍射、数据收集④确定蛋白结构衍射数据→数据处理→相位解析→建模→模型修正→模型检验⑤理解结构与功能的相互关系

X-射线荧光仪检测晶体的介绍

   分光晶体是具有把 X 射线荧光按波长顺序分开成光谱作用的晶体。   晶体应该具备的条件:衍射强度大;应该适用于所测量的分析线;分辨率高;峰背比高;不产生附加发射和异常反射;热膨胀系数小、温度效应低;经受 X 射线长期照射,稳定性好;机械强度良好;容易加工等等。

X射线晶体定向仪工作原理

  利用X射线衍射原理,精密快速地测定天然和人造单晶(压电晶体,光学晶体,激光晶体,半导体晶体)的切割角度,与切割机配套可用于上述晶体的定向切割,是精密加工制造晶体器件不可缺少的仪器·该仪器广泛应用于晶体材料的研究,加工,制造行业。  工作原理  X射线晶体定向仪利用X射线衍射原理,精密快速地测定天

Nature:无需结晶的X射线晶体分析

  X射线晶体分析曾帮助人们揭示了DNA双螺旋和其他无数分子的结构,而现在科学家们对这一技术进行了升级。本期Nature上发表的一项研究显示,利用微小的分子海绵,可以进行无需结晶的X射线晶体分析。这一方法省却了麻烦的结晶步骤,使X射线晶体分析更简便快捷,同时也提升了灵敏度。   “你可以称之为,无

继氢键之后,国人再次首获分子氢晶体学信息

  据预测,氢分子具有奇异的物理特性和两组分(电子和质子)超导超流体冷凝物的拓扑结构。因此,了解这种转变仍然是凝聚态物理学中的重要目标。但是,由于在极端条件下进行X射线和中子衍射测量涉及相当大的技术挑战,因此对于大多数高压相,缺乏提供有关压缩状态下氢金属化的关键信息。  最近,北京高压科学研究中心毛

X射线衍射仪用于研究物质的物相和晶体结构

X射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X射线衍射仪分为单晶衍射仪和多晶衍射仪两种。单晶衍射仪的被测对象为单晶体试样,主要用

x射线单晶体衍射仪的应用

  晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:  (一).晶体结构的成功测定,在 晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成 多面体外形(

x射线单晶体衍射仪同步辐射

  是一种大科学装置,设备大投资高,一般都需要政府投资,不是一般实验室所能具备的,需要 申请立项才能使用。因此,如果能发展出高强度的实验室光源和极高灵敏度的探测器,使在一般实验室中也能测定生物大分子结构,则绝对是有益的。  有许多生物反应的速度是相当快的, 如血红蛋白与一氧化碳的结合,速度在纳秒级(

X射线晶体衍射学的理论依据

  对于X 射线衍射理论的研究, 目前有两种理论:运动学和动力学衍射理论 [2] 。  运动学衍射理论  达尔文(Darwin)的理论称为X 射线衍射运动学理论。该理论把衍射现象作为三维Frannhofer 衍射问题来处理, 认为晶体的每个体积元的散射与其它体积元的散射无关, 而且散射线通过晶体时不

X射线单晶体衍射仪的应用

晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:(一).晶体结构的成功测定,在晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成多面体外形(自范性),如

X射线晶体学的原理和方法

原理:蛋白质晶体内部结构为三维空间周期、有序、重复排列,要求每个结晶重复单位(分子或其复合体)的化学组成与分子构象是均一的。方法:为了获得可供衍射的单晶,就需要将纯化后的生物样品进行晶体生长。晶体生长的方法有很多,如气相扩散法、液相扩散法、温度渐变法、真空升华法、对流法等等,而目前应用最广泛的晶体生

影响X-射线荧光仪检测晶体的因素

   (1)温度变化:温度变化能改变分子间距;   (2)湿度变化:有些晶体如果湿度太高表面就易模糊了;   (3)酸碱影响:有些晶体会由于对强酸或强碱的吸附作用而大大降低其衍射强度。

X射线单晶体衍射仪的介绍

X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出

X射线晶体衍射学的发现与历史

  1912 年在人类的科学史上是一个重要的年份、一个里程碑式的年份,因为德国科学家劳厄(Maxvon Laue, 1879-1960)在这一年发现了X 射线晶体衍射现象,并开创了X 射线衍射物理学的研究。紧接着,英国科学家小布拉格(William LawrenceBragg,1890-1971)在

X射线晶体学的研究对象和目的

X射线晶体学是一门利用X射线来研究晶体中原子排列的学科。更准确地说,利用电子对X射线的散射作用,X射线晶体学可以获得晶体中电子密度的分布情况,再从中分析获得原子的位置信息,即晶体结构。对很多余结构相关的问题如整体折叠、配体或底物结合、作用的原子具体信息提供可靠的答案。运用X射线晶体学可以了解大分子如

x射线单晶体衍射仪数据的积累

  数据的积累  从前述的应用已经看出,晶体结构的测定及结构与性能关系的研究, 是今后走上人类按需设计新材料的基础。今日虽已测了许多晶体的结构,但还有许多未能测定,而且还不断有新化合物,新晶体出现, 因此不断的测定他们的结构,加以总结分析是十分必要的。当今已有多个晶体结构数据库,如:  1、剑桥结构

关于X-射线荧光仪检测晶体的清洗介绍

   晶体的清洗:LiF、Ge 使用二甲苯清洗;PET、TAP 使用丙酮清洗,但是二者表面镀有 C,以防止晶体潮解,使用的时候不要擦掉,洗后如果失去 C,晶体就容易损坏。另外,清洗时应该将晶体在容器洗液中来回晃动,一般不要擦拭。   晶体有很大的温度系数,所以,反射角很大的元素将很容易受温度影响。A

x射线单晶体衍射仪的应用简介

  晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:  (一).晶体结构的成功测定,在 晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成 多面体外形(

常用的X-射线荧光仪检测晶体的介绍

   常用晶体有 LiF、PET(用于检测 Si、Al)、Ge(用于检测P)、NaCl 、TAP (用于检测 Mg 、Na 、F),其中 TAP、PET、NaCl 等都是耐潮能力差的晶体,容易损坏,特别是 NaCl 容易潮解。TAP、PET的使用寿命一般为 5~6 年,因为太硬,容易出现裂纹,一般不

X射线单晶体衍射仪的基本公式

由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的平行六面体(称晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或晶胞参数,见图1。这样一个三维点阵也可以看成是许多相同的平面点阵平行

x射线单晶体衍射仪的基本公式

  由于晶体中原子是周期排列的,其周期性可用点阵表示。而一个三维点阵可简单地用一个由八个相邻点构成的 平行六面体(称 晶胞)在三维方向重复得到。一个晶胞形状由它的三个边(a,b,c)及它们间的夹角(γ,α,β)所规定,这六个参数称点阵参数或 晶胞参数,见图1。这样一个三维点阵也可以看成是许多相同的平

X射线荧光光谱仪分光晶体简介

  分光晶体是光谱仪的重要元件,应用了X射线的衍射特性,将样品发射的各元素的特征X射线荧光,按波长分开以便测量每条谱线。不同的晶体和同一晶体的不同晶面具有不同的色散率和分辨率。  由上式可以看出,晶体角色散率和所用晶体的晶面间距2d、衍射角θ及衍射级有关,即2d间距越小,角色散率越大;衍射角越大,角