离体线粒体的氧化作用和磷酸化作用实验

实验方法原理当供给植物组织充足的氧气时,植物细胞可使底物完全氧化。以葡萄糖为呼吸底物完全氧化时,最后生成CO2,吸收的O2被还原成水,并且每克分子葡萄糖的氧化产生38克分子ATP: 其中大部分ATP是通过称为氧化磷酸化作用形成的,这也是细胞内形成可利用能量的主要过程,现在可以肯定三羧酸循环及其与之相偶联的氧化磷酸化作用是在线粒体中进行的。在线粒体中进行这些反应的速度可用耗氧量来表示,也可用形成ATP的量来表示。本实验用黑暗中萌发的绿豆子叶或黑暗催芽的马铃薯块茎制备离体的线粒体,以琥珀酸为底物定性测定O2的消耗和产生的ATP,并应用丙二酸抑制呼吸作用观察耗氧量的变化。仪器、耗材测氧仪 ......阅读全文

离体线粒体的氧化作用和磷酸化作用实验

实验方法原理当供给植物组织充足的氧气时,植物细胞可使底物完全氧化。以葡萄糖为呼吸底物完全氧化时,最后生成CO2,吸收的O2被还原成水,并且每克分子葡萄糖的氧化产生38克分子ATP:其中大部分ATP是通过称为氧化磷酸化作用形成的,这也是细胞内形成可利用能量的主要过程,现在可以肯定三羧酸循环及其与之相偶

离体线粒体的氧化作用和磷酸化作用实验

实验方法原理当供给植物组织充足的氧气时,植物细胞可使底物完全氧化。以葡萄糖为呼吸底物完全氧化时,最后生成CO2,吸收的O2被还原成水,并且每克分子葡萄糖的氧化产生38克分子ATP: 其中大部分ATP是通过称为氧化磷酸化作用形成的,这也是细胞内形成可利用能量的主要过程,现在可以肯定三羧酸循环及其与之相

离体线粒体的氧化作用和磷酸化作用实验

实验方法原理 当供给植物组织充足的氧气时,植物细胞可使底物完全氧化。以葡萄糖为呼吸底物完全氧化时,最后生成CO2,吸收的O2被还原成水,并且每克分子葡萄糖的氧化产生38克分子ATP:其中大部分ATP是通过称为氧化磷酸化作用形成的,这也是细胞内形成可利用能量的主要过程,现在可以肯定三羧酸循环及其与之相

鹿衔草的氧化作用

  2"-0-没食子酰基金丝桃苷具有抗氧化、清除脂质过氧自由基和抑制脂质过氧化活性。对鹿衔草甲醇提取物、水提取物、气仿提取物和石油醚提取物进行r抗氧化活性测定,结果表明4种粗提物对DPPH自由基清除能力、总抗氧化性和总酚含量大小有着一一致的顺序,高极性溶剂提取物的抗氧化活性较低极性溶剂提取物要强。

鹿衔草的抗氧化作用

  2"-0-没食子酰基金丝桃苷具有抗氧化、清除脂质过氧自由基和抑制脂质过氧化活性。对鹿衔草甲醇提取物、水提取物、气仿提取物和石油醚提取物进行r抗氧化活性测定,结果表明4种粗提物对DPPH自由基清除能力、总抗氧化性和总酚含量大小有着一一致的顺序,高极性溶剂提取物的抗氧化活性较低极性溶剂提取物要强。

谷胱苷肽的抗氧化作用

  谷胱甘肽作为体内一种重要的抗氧化剂,能够清除掉人体内的自由基;由于GSH本身易受某些物质氧化,所以它在体内能够保护许多蛋白质和酶等分子中的巯基不被有害物质氧化,从而保证蛋白质和酶等分子生理功能的正常发挥;人体红细胞中谷胱甘肽的含量很多,这对保护红细胞膜上蛋白质的巯基处于还原状态,防止溶血具有重要

β氧化作用的发现过程

β氧化作用的提出是在二十世纪初,Franz Knoop 在此方面作出了关键性的贡献。他将末端甲基上连有苯环的脂肪酸喂饲狗,然后检测狗尿中的产物。结果发现,食用含偶数碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇数碳的脂肪酸的狗的尿中有苯甲酸的衍生物马尿酸。 Knoop由此推测无论脂肪酸链的

线粒体作用

⑴若将纯化的正常的线粒体与纯化的细胞核在一起保温,并不导致细胞核的变化。但若将诱导生成PT孔道的线粒体与纯化的细胞核一同保温,细胞核即开始凋亡变化。⑵细胞死亡调节蛋白不论是抑制死亡的bcl-2家族还是促进细胞死亡的Bax家族均以线粒体作为靶细胞器。bcl-2蛋白的C端的疏水肽段能插入线粒体外膜。事实

假人参的抗氧化作用

  张健经对假人参叶和根中抗氧化成分的含量和活性的研究分析,并分别对维生素C、可溶性糖、POD、CAT、GSH一PX等含量进行了量化分析,得出其根部的总抗氧化能力较高。SOD活性较高,总抗氧化能力较强,具有一定的开发利用价值。[5]

关于生物氧化的氧化作用

  糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。  (一)α-磷酸甘油穿梭作用  这种作用主要存在

黄芩的抗氧化作用如何?

  黄芩具有显著的抗氧化作用。  黄芩中的黄芩素等成分具有抗氧化作用,能够清除体内的自由基,保护细胞免受氧化损伤。自由基是一种高度活跃的化学物质,能够与细胞内的脂质、蛋白质和DNA发生反应,导致细胞损伤和衰老。  黄芩的抗氧化作用主要体现在以下几个方面:  清除自由基:黄芩中的黄芩素等成分能够清除体

线粒体的作用

线粒体的作用:1、细胞有氧呼吸的主要场所线粒体是一种存在于大多数细胞中的用两层膜包被的细胞器,是细胞有氧呼吸的主要场所,被称为“power house”,其直径在0.5到1.0微米左右。大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小数量以及外观等方面上都有所不同。线粒体是一些大小不

生物氧化的氧化作用过程

糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。(一)α-磷酸甘油穿梭作用这种作用主要存在于脑、骨骼肌

简述GOD的抗氧化作用机制

  GOD能消耗分子氧或原子氧氧化葡萄糖,保护食品中的易氧化成分。按反应条件GOD催化反应有3种形式:  ( 1)没有过氧化氢酶存在时,每氧化1 mol葡萄糖消耗1 mol氧:  C6H12O6+O2→C6H12O7+H2O2 ;  β-D-葡萄糖+ O2→β-D-葡糖内酯+ H2O2 ;  ( 2

线粒体的功能作用

⑴若将纯化的正常的线粒体与纯化的细胞核在一起保温,并不导致细胞核的变化。但若将诱导生成PT孔道的线粒体与纯化的细胞核一同保温,细胞核即开始凋亡变化。⑵细胞死亡调节蛋白不论是抑制死亡的bcl-2家族还是促进细胞死亡的Bax家族均以线粒体作为靶细胞器。bcl-2蛋白的C端的疏水肽段能插入线粒体外膜。事实

虾青素的抗氧化作用介绍

  虾青素化学名称为3,3′-二羟基-4,4′-二酮基-β,β′-胡萝卜素,分子式为C40H52O4 ,晶体状虾青素为粉红色,熔点215-216℃ ,不溶于水,具脂溶性,易溶于氯仿、丙酮、苯等大部分有机溶剂。虾青素分子结构中的共轭双键链,及共轭双键链末端的不饱和酮基和羟基,能吸引自由基未配对电子或向

简述岩藻多糖的抗氧化作用

  大量体外实验表明岩藻多糖具有显著的抗氧化活性,它是一种天然的抗氧化剂,能十分有效地阻止自由基引起的疾病。Costa等从11种热带海藻中提取出硫酸化的多糖,所有的硫酸化多糖都具有抗氧化活性、形成亚铁螯合物能力和还原力,5种具有清除羟自由基的能力,6种具有清除过氧自由基的能力。Micheline等报

简述丙酮酸的抗氧化作用

  有研究已表明,丙酮酸能抑制鼠体内氧自由基的氧化作用,同时作为一种过氧化氢清除剂,具有防止自由基损伤的作用,已在心脏再灌注损伤和急性肾衰竭中证实具有保护机体抗功能性损伤。丙酮酸可通过两种机制起到抗氧化作用:其一,作为一种α-酮酸,丙酮酸可直接通过非酶促的去碳酸基反应抑制过氧化氢;其二,补充丙酮酸可

Cell子刊:磷酸化决定线粒体的关键功能

  为了确保营养物质的有效利用,细胞会捕获可用的营养分子并将其转运到细胞内部。当不同营养物质同时存在时,细胞会根据自己的功能状态选择最合适的分子,放弃其他营养物。日前,Cell Metabolism杂志上发表的一项新研究,解析了线粒体在面对不同营养物质时的适应机制。  营养物质进入细胞后会被送到线粒

光合磷酸化和同线粒体的氧化磷酸化的主要区别

在光合作用的光反应中,除了将一部分光能转移到NADPH中暂时储存外,还要利用另外一部分光能合成ATP,将光合作用与ADP的磷酸化偶联起来,这一过程称为光合磷酸化。它同线粒体的氧化磷酸化的主要区别是:氧化磷酸化是由高能化合物分子氧化驱动的,而光合磷酸化是由光子驱动的。

关于自由基的抗氧化作用介绍

  在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。已从单纯的合成抗氧化剂和食品氧化剂逐渐发展成为天然抗氧化剂与体内自由基清除剂。因此,对抗氧化剂的要求也越来越高,而各种广泛使用的合成抗氧化剂由于其潜在毒性和致癌作用等逐渐受到人们的排斥。在这方面的研究中,中国的科学家们已经走在世界的前列。

葡糖氧化酶的抗氧化作用机制

GOD能消耗分子氧或原子氧氧化葡萄糖,保护食品中的易氧化成分。按反应条件GOD催化反应有3种形式:( 1)没有过氧化氢酶存在时,每氧化1 mol葡萄糖消耗1 mol氧:C6H12O6+O2→C6H12O7+H2O2 ;β-D-葡萄糖+ O2→β-D-葡糖内酯+ H2O2 ;( 2)有过氧化氢酶存在时

关于线粒体作用的介绍

  ⑴若将纯化的正常的线粒体与纯化的细胞核在一起保温,并不导致细胞核的变化。但若将诱导生成PT孔道的线粒体与纯化的细胞核一同保温,细胞核即开始凋亡变化。   ⑵细胞死亡调节蛋白不论是抑制死亡的bcl-2家族还是促进细胞死亡的Bax家族均以线粒体作为靶细胞器。bcl-2蛋白的C端的疏水肽段能插入线粒

Science修订线粒体作用模型

  线粒体是细胞内的重要器官,负责从营养物质中提取能量,并将其转化为细胞可用的能源。2008年科学家们在实验观察的基础上,提出了修订版的线粒体作用模型,他们对这一新模型进行了验证。文章发表在本期的Science杂志上。   营养物质的摄取消化和吸收,是为了给机体内的细胞提供能量。消化道对营养物质进

关于β胡萝卜素的抗氧化作用介绍

  β-胡萝卜素的抗氧化性主要表现为它具有清除自由基的能力。β-胡萝卜素分子中含有多个双键,在光、热、氧气及活泼性较强的自由基离子的存在下,易被氧化,从而保护机体不被破坏。生物体中存在大量的脂质过氧化和自由基反应,从而导致细胞功能的下降,机体的衰老以及疾病的发生,β-胡萝卜素的存在可减少脂质过氧化。

藏茵陈如何通过抗氧化作用保护身体?

  藏茵陈的抗氧化作用主要是通过其含有的多种活性成分,如黄酮类化合物、多酚类化合物等来实现的。这些活性成分可以清除体内的自由基,减少氧化损伤,从而保护身体免受氧化应激的伤害。  自由基是一种高度活跃的化学物质,它们在正常的生理过程中会产生,但过多的自由基会导致氧化应激,损害细胞和组织,进而引发多种疾

线粒体DNA的结构和作用

线粒体DNA是线粒体中的遗传物质,线粒体能为细胞产生能量(ATP),是在细胞线粒体内发现的脱氧核糖核酸特殊形态。线粒体是为细胞提供能量(ATP)的细胞器。一个线粒体中一般有多个DNA分子。它们携带着自己的DNA——mtDNA,而这些基因的突变能引起线粒体疾病。虽然疾病症状是多变的,但大脑、肌肉和心脏

线粒体的重要作用介绍

  线粒体形状为棒状,是细胞进行有氧呼吸的主要场所,具有双层膜,内层膜向内折叠形成“嵴”(作用是可以扩大酶的附着位点)。线粒体又称"动力车间",细胞生命活动所需的能量,大约95%来自线粒体,含核糖体,可产生DNA和RNA,能相对独立遗传。存在于所有真核生物细胞中(厌氧菌及哺乳动物成熟的红细胞除外),

研究揭示线粒体ROS通过细胞自噬影响肌肉分化的新机制

  肌肉分化是控制肌肉发育和维持肌肉稳态的重要过程。在肌肉分化过程中,线粒体活性氧簇快速增加,并作为关键的细胞信号中间分子发挥功能。但是线粒体ROS如何控制肌肉基因信号还未被阐明。  细胞自噬是一个由溶酶体介导的降解途径,与细胞凋亡和衰老一样是十分重要的生物学现象,参与生物的发育、生长等多种过程,在

线粒体的主要功能

线粒体的作用:1、细胞有氧呼吸的主要场所线粒体是一种存在于大多数细胞中的用两层膜包被的细胞器,是细胞有氧呼吸的主要场所,被称为“power house”,其直径在0.5到1.0微米左右。大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小数量以及外观等方面上都有所不同。线粒体是一些大小不