深度学习加快了3D微观神经成像的速度

德克萨斯州奥斯汀和圣地亚哥Salk研究所的研究人员使用深度学习技术,开发了一种新的显微方法,可以使用于大脑成像的显微技术快16倍。研究人员使用德克萨斯大学奥斯汀分校(UT Austin)德克萨斯高级计算中心(TACC)的数据训练了他们的深度学习系统。索尔克生物学研究所Waitt先进生物光子学核心设备的负责人Uri Manor认为,深度学习可用于提高显微图像的分辨率,类似于用于提高卫星和MRI图像分辨率的方法。他与图像分析专家Linjing Fang共同开发了一种使用图形处理单元(GPU)来加快显微图像处理速度的方法。 Manor与UT奥斯汀分校的Kristen Harris教授合作,为深度学习培训开发了大量数据。他使用德克萨斯高级计算中心的Maverick超级计算机,创建了高分辨率显微图像的低分辨率类似物,并在这些图像上训练了深度学习网络。他最初创建低分辨率图像的超分辨率版本的尝试均未成功。曼诺说:“当我们尝试在比低分辨率......阅读全文

深度学习加快了3D微观神经成像的速度

  德克萨斯州奥斯汀和圣地亚哥Salk研究所的研究人员使用深度学习技术,开发了一种新的显微方法,可以使用于大脑成像的显微技术快16倍。研究人员使用德克萨斯大学奥斯汀分校(UT Austin)德克萨斯高级计算中心(TACC)的数据训练了他们的深度学习系统。索尔克生物学研究所Waitt先进生物光子学核心

新构建!深度脉冲神经网络学习框架“惊蜇”

中国科学院自动化所李国齐研究员和北京大学计算机学院田永鸿教授团队合作构建出深度脉冲神经网络学习框架“惊蜇”。它可以提供全栈式的脉冲深度学习解决方案,能够处理神经形态数据、构建深度脉冲神经网络、部署神经形态芯片。相关研究成果在线发表于《科学进展》杂志。图片来源:中国科学院自动化所脉冲神经网络被誉为第三

科学家构建深度脉冲神经网络学习框架

  脉冲神经网络(Spiking Neural Network,SNN)被誉为第三代神经网络,使用更低层次的生物神经系统的抽象。它既是神经科学中研究大脑原理的基本工具,又因稀疏计算、事件驱动、超低功耗的特性,备受计算科学的关注。随着深度学习方法的引入,SNN的性能得到大幅提升,脉冲深度学习(Spik

科学家开发出深度学习超分辨显微成像方法

1月21日,中国科学院生物物理所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural net

科学家开发出深度学习超分辨显微成像方法

  1月21日,中国科学院生物物理所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural networks

计算成像可解释性深度学习重建方法研究取得进展

  傅里叶叠层成像是一种新兴的计算成像技术,其成像的正向模型包括光瞳函数的低通滤波、光瞳在频域内的扫描采样、傅里叶变换和复杂的成像噪声污染。传统基于深度神经网络学习(如卷积神经网络)方法在远距离场景下,环境噪声干扰更为复杂,高分辨率图像重建难度显著增加。  中国科学院西安光学精密机械研究所科研团队提

深度学习算法“解密”脑活动

  英国《自然·医学》杂志9月25日在线发表的一项研究,报告了一种可以分析四肢瘫痪患者大脑活动的深度学习算法。该算法已被用于向患者的前臂肌肉传递电刺激,从而恢复瘫痪肢体的功能性运动。  慢性瘫痪患者的生活质量可以通过脑机接口加以改善。脑机接口可以将控制运动的中枢神经系统回路和辅助设备(例如计算机光标

AI侦探敲碎深度学习黑箱

  研究人员创建了能填补照片空白的神经网络,以鉴别人工智能瑕疵。  Jason Yosinski坐在美国加州旧金山的一个小型玻璃办公室内,陷入了对人工智能的沉思。作为优步公司的研究科学家,Yosinski正为在笔记本电脑上运行的人工智能(AI)进行“脑外科手术”。  很多AI将改变人类现代生活,例如

科学家开发出合理化深度学习超分辨显微成像方法

  光学超分辨显微成像技术使人们能够从微观纳米尺度观测细胞内的动态生命活动,是当今细胞生物学、发育生物学、神经科学等生命科学领域的重要研究工具。基于深度学习的超分辨成像技术在保证成像指标,如速度、时程或视野等性能的前提下,进一步提升了显微图像分辨率或信噪比,表现出更大的应用前景。  近日,中国科学院

深度学习算法准确追踪动物运动

  根据英国《自然·神经科学》杂志8月21日在线发表的一项研究,美国哈佛大学团队运用一种新型深度学习算法,成功追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。专家认为,这一成果打开了海量的数据来源之门。  准确追踪行为发生期间的身体运动部位是运动科学的一项重要

TPU将成深度学习的未来?(一)

在Google I/O 2016的主题演讲进入尾声时,谷歌的CEO皮采提到了一项他们这段时间在AI和机器学习上取得的成果,一款叫做Tensor Processing Unit(张量处理单元)的处理器,简称TPU。在这个月看来,第一代的TPU处理器已经过时。在昨天凌晨举行的谷歌I/O 2017

TPU将成深度学习的未来?(二)

能够进行数据推理的第二代TPU第一代的TPU只能用于深度学习的第一阶段,而新版则能让神经网络对数据做出推论。谷歌大脑研究团队主管Jeff Dean表示:“我预计我们将更多的使用这些TPU来进行人工智能培训,让我们的实验周期变得更加快速。”“在设计第一代TPU产品的时候,我们已经建立了一个相对

深度学习协助预测厄尔尼诺-|《自然》论文

  《自然》发表的一篇论文Deep learning for multi-year ENSO forecasts报道了一种可以提前一年半预测厄尔尼诺事件的深度学习方法,克服了该领域内长期存在的一项挑战。用来预测厄尔尼诺现象的CNN预测系统来源: Ham et al.  厄尔尼诺事件发生于太平洋东部和

人工智能进入“深度学习+”阶段

  虽然从底层技术看,ChatGPT并不算创新,但其社会影响远远超出了预期。这款由美国人工智能公司OpenAI开发的聊天机器人,2022年11月推出后火遍全球,成为史上增长最快的消费者应用程序。  让机器和真人自由对话,一直是人工智能领域的重要目标之一。ChatGPT的爆火背后,其实是深度学习技术的

新光学芯片可实现高效“深度学习”

  美国麻省理工学院(MIT)科学家在12日出版的《自然·光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。  “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中

深度学习复兴:向人工智能迈进

  它是未来的一部分,我们才刚刚开始。图片来源:BRUCE ROLFF   3年前,美国加利福尼亚州山景城神秘的谷歌X实验室的研究人员从YouTube视频中提取了1000万个静态图像,并将其输入“谷歌大脑”——由1000台计算机构成的网络,从而试图像一个蹒跚学步的孩子一样吸收这个世界的信息。经过3

新光学芯片可实现高效“深度学习”

  美国麻省理工学院(MIT)科学家在12日出版的《自然·光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。  “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中

人脸检测发展:从VJ到深度学习(一)

这是一个看脸的世界!自拍,我们要艺术美颜;出门,我么要靓丽美妆。上班,我们要刷脸签到;回家,我们要看脸相亲。 当手机把你的脸变得美若天仙,当考勤机认出你的脸对你表示欢迎,你知道是什么魔力让冷冰冰的机器也变得温情脉脉,让呆呆的设备也变得善解人意吗?今天就让我们走近它们的内心,了解这些故事背后的一项

人脸检测发展:从VJ到深度学习(二)

  选好了窗口,我们开始对窗口中的图像区域进行观察,目的是收集证据——真相只有一个,我们要依靠证据来挖掘真相!在处理图像的过程中,这个收集证据的环节我们称之为特征提取,特征就是我们对图像内容的描述。由于机器看到的只是一堆数值,能够处理的也只有数值,因此对于图像所提取的特征具体表示出来就是一个

深度学习模型成功识别胚胎发育过程

  英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。 

人脸检测发展:从VJ到深度学习(六)

  还有一种比较典型的结构是树形的级联结构,从形状上来看其和金字塔式的级联结构是一样的,也是从上往下分类器的数目逐层增多,区别就在于树形的级联结构中没有同一层分类器之间的横向连接,只有相邻层分类器之间的纵向连接,即一个窗口在同一层上不会由多个分类器进行分类,而会直接被送往下一层或者被排除。树

深度学习“见顶”不等于AI寒冬

   尽管新的算法模型在推动AI向前发展,但并不意味着它们的前景可以预见,也不意味着深度学习“不可救药”。  在当前的第三次人工智能(AI)浪潮之中,深度学习算法被认为是迄今为止“最为重大的AI革命”。此说法或许有所夸大,但深度学习对这一轮AI的大爆发而言的确功不可没。然而,最近以来,关于深度学习算

深度学习模型成功识别胚胎发育过程

英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。普利茅

深度学习算法-助力精准诊断结直肠肿瘤

  根据发表在《Life Science Alliance》杂志上的新研究,一种新的深度学习算法可以快速,准确地分析来自结直肠肿瘤的几种基因组数据,以进行更准确的分类,从而有助于改善诊断和相关的治疗选择。  大肠肿瘤的发展方式各不相同,需要接受的药物类型也不同,生存率也大不相同。通常,基于对基因表达

基于深度学习的化纤外观缺陷语义分割

摘要: 针对化纤外观缺陷检测使用基于深度学习的语义分割方法,总结了自2014年以来基于深度学习的典型语义分割方法,并在此基础上应用到化纤外观检测项目上,取得了不错的效果。 01 化纤外观缺陷检测背景 化纤作为纺织制造的原料,由化纤生产企业进入下游纺织企业前会收卷形成丝饼,但在丝饼

深度学习在雷达中的研究综述(二)

其中, J(w,b) 为对应自编码器代价函数, β 为控制系数性惩罚因子权重。2.3 DBN基本原理DBN是一个概率生成模型,其建立一个观测数据与标签之间的联合分布。并且DBN由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成,典型的DBN结构如图4所示。

深度学习框架可预测锂电池寿命

  近日,华东理工大学机械与动力工程学院、先进电池系统与安全重点实验室教授栾伟玲课题组与国家级高层次人才、华东理工大学讲席教授陈浩峰合作,在全球交通科学与技术领域期刊《交通电动化》发表论文,首次提出用于锂电池寿命预测相关的可解释性深度学习框架。  在锂电池寿命预测领域,建立全面的电池老化模型是项艰巨

人脸检测发展:从VJ到深度学习(四)

  造成人脸检测速度慢的根本原因还在于输入规模过大,动辄需要处理几十上百万的窗口,如果这样的输入规模是不可避免的,那么有没有可能在处理的过程中尽快降低输入规模呢?如果能够通过粗略地观察快速排除掉大部分窗口,只剩下少部分窗口需要进行仔细的判别,则总体的时间开销也会极大地降低。从这样的想法出发,

深度学习在雷达中的研究综述(三)

3.2 基于SAE的SAR图像处理研究SAE的特点是可自动从无标记数据中学习特征,并且给出比原始数据更好的特征描述,进一步通过该学习到的特征得到更好的分类效果。有学者将其应用于地物目标分类、舰船分类以及城市变化检测等场景。并且通过SAE对SAR图像进行分析,其与传统方法相比,展现SAE具有自动学习高

人脸检测发展:从VJ到深度学习(五)

  在过去十几年的探索过程中,涌现出的特征不胜枚举,这里只选取了部分比较有代表性和反映了人们探索思路的特征进行举例。这里所有列举的特征都有一个共同的特点:都由科研工作者根据自己的经验手工设计,这些特征的设计反映了人们对问题的理解和思考。虽然随着不断的改进,设计出的特征已经日臻完善,但直到现在