转座子Tol2的转座机制与转座优势详述(一)
Tol2转座子提及转基因,大家首先映入脑海的是什么呢?转基因大豆?玉米?食用油?(对于那些一个都想不到的孩纸们,小编我只想哭晕在厕所)名词很熟悉,各大超市随处可见,可何为转基因,如何得到转基因产品?今天小编简单来跟大家聊一聊。所谓转基因,顾名思义,就是外源基因整合进入宿主基因组,目前哺乳动物系统最常用的转基因技术主要包括Sleeping beauty(SB),PiggyBac(PB)以及Tol2转座子系列,然而,其中的“明星转座子”当属Tol2!1、Tol2转座机制Tol2转座子是Koga等人在日本青鳉鱼中发现,属于hAT转座子家族,全长4682bp,末端分别为17bp和19bp的反向重复序列,包含4个外显子(图1),编码蛋白含有649个氨基酸残基。Tol2作为一个自主的转座元件,自身可以编码转座酶,且迄今为止,是在脊椎动物中发现的唯一具有自主转座活性的转座子[1]。将转座酶编码区序列部分缺失, 但保留转座酶识别和结合区域序列,......阅读全文
生化与细胞所等研究发现小鼠PIWI/piRNA代谢调控机制
国际知名学术期刊Developmental Cell于1月13日发表了中科院上海生命科学研究院生化与细胞所刘默芳组、王恩多组关于piRNA在精子发生后期触发小鼠PIWI(MIWI)蛋白经 APC/C-泛素途径降解的最新研究成果。该工作与李劲松研究员、上海计划生育研究所施惠娟研究员、美国路
我国学者揭示新型CRISPRCas系统靶向DNA的作用机制
1月8日,国际学术期刊Cell Research在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)杨荟研究组题为“Structural basis of a Tn7-like transposase recruitment and DNA loading to CRIS
自然界基因转移的方式
两种形式:纵向转移和横向转移。 纵向转移是指通过亲代-子代这样的遗传的方式,将遗传信息从一个个体传递到另一个个体。而横向转移是指不同个体间,通过转坐、病毒介导、细胞融合等方式从一个个体传递到另一个个体,这两个个体间没有亲子关系。 你能不能把完整的题目贴出来? 接合是指不同交配型的细菌靠微管
碳青霉烯耐药肺炎克雷伯菌
流行趋势 碳青霉烯类药物曾是抵抗携带超广谱β-内酰胺酶肺炎克雷伯菌的最锐利武器,随着碳青霉烯类药物的广泛使用,肺炎克雷伯菌对碳青霉烯类药物的耐药率持续上升,在全球范围内广泛流行,中国CHINET细菌耐药性监测显示碳青霉烯药物对肺炎克雷伯菌耐药率从2009年2%至2013年超过10%,
科学家发现控制红苹果着色分子机制
红苹果,人人爱。可是,苹果皮为什么能进化出诱人的红色,是个有趣而复杂的问题。 4月2日,《自然-通讯》在线发表了中国科学家的最新成果,诠释了苹果为什么这样红的奥秘。中国农业科学院果树研究所(以下简称果树所)苹果资源与育种创新团队在完成了苹果花药培育纯系高质量基因组测序的基础上,揭示了反转座子控
中国首发纳米孔RNA直接测序揭示其在全长转录本中的作用
近日发表在RNA Biology上的研究中,来自中国科学院北京生命科学研究院、动物研究所及中国科学院大学等多家单位的科学家们首次通过5’-Cap捕获法对蝗虫的 RNA直接测序,揭示了Piwi 外显子化模式的广泛建立以及蝗虫转录组中的转座子(TEs)对RNA剪接的重要作用。 转座子(TEs)在后
分子遗传学词汇逆转录转座
中文名称:逆转录转座英文名称:retrotransposition;retroposition定 义:RNA介导的转座。转座子RNA中间物转变成DNA拷贝,并随后整合进入基因组的过程。应用学科:生物化学与分子生物学(一级学科),基因表达与调控(二级学科)
跳跃基因的应用
要想将一个基因从A位点转移到B位点,研究人员和基因治疗专家只有两个选择:使用一种能有效地将感兴趣基因输送到细胞中的病毒;质粒,一种能够做同样工作的经加工的DNA环。问题是,病毒是感染性的,并且一些类型的病毒偶尔会到达癌基因附近的靶标基因组,从而增加癌症风险。质粒不会有这种风险,但是它们却不能在细胞中
简述跳跃基因的应用
要想将一个基因从A位点转移到B位点,研究人员和基因治疗专家只有两个选择:使用一种能有效地将感兴趣基因输送到细胞中的病毒;质粒,一种能够做同样工作的经加工的DNA环。 问题是,病毒是感染性的,并且一些类型的病毒偶尔会到达癌基因附近的靶标基因组,从而增加癌症风险。质粒不会有这种风险,但是它们却不能
跳跃基因的应用
要想将一个基因从A位点转移到B位点,研究人员和基因治疗专家只有两个选择:使用一种能有效地将感兴趣基因输送到细胞中的病毒;质粒,一种能够做同样工作的经加工的DNA环。问题是,病毒是感染性的,并且一些类型的病毒偶尔会到达癌基因附近的靶标基因组,从而增加癌症风险。质粒不会有这种风险,但是它们却不能在细胞中
上海生科院揭示拟南芥DNA主动去甲基化调控新机制
12月9日,《细胞研究》(Cell Research)杂志在线发表了中国科学院上海生命科学研究院上海植物逆境生物学研究中心朱健康研究组题为A pair of transposon-derived proteins function in a histone acetyltransferase c
植物所在玉米耐旱基因克隆研究中取得进展
玉米是我国最重要的粮食作物之一,其生产常常受到干旱等自然灾害的威胁,在干旱严重的年份或区域甚至面临绝收的危险。发掘控制玉米耐旱性的遗传位点、克隆玉米耐旱基因、揭示其生物学功能的分子机理,具有重要的研究价值和应用价值。中国科学院植物研究所秦峰研究组利用全球不同地区的玉米材料组成的自然变异群体,运用
Cell发布piRNA重要发现
来自东京大学的一个研究小组鉴别出了一种叫做“Trimmer”酶,其参与生成了保护生殖细胞基因组免遭不必要遗传重写的一类小RNA。 “跳跃基因”(又称转座子)是可以在基因组中四处移动的DNA小片段。它们可以破坏宿主基因,与癌症和其他一些疾病有关联。因此,生物体需要控制它们,尤其是在生成动物精子和
不敢吃转基因食品?天然“转基因作物”已经吃几千年
世界上第一棵转基因作物是什么?早在数千年前,它已在自然条件下诞生。我们常吃的圣女果、血橙,其实都归功于不安分的“转座子”。 世界上的第一棵转基因作物是什么?它是出身于实验室里,由科学家培育出来的吗?你可能想象不到,早在数千年前,第一棵转基因作物就已经在自然条件下诞生了。 自然界外源“转基因”
细菌转位因子的概念与分类
概念:为存在于细菌染色体或质粒上的一段特异的核苷酸重复序列,它可在DNA分子中移动,不断改变它们在基因组内的位置,从一个基因组移动到另一个基因组中。分类:①插入序列:两末端为反向重复顺序和转座有关的基因组成,不携带其他任何已知和插入功能无关的基因区域,是最小的转位因子。②转座子:携带有与插入功能无关
薰衣草近缘物种分化及精油品质差异的分子机制揭示
享有“香草皇后”美誉的薰衣草,为唇形科薰衣草属多年生亚灌木,花朵芬芳,从中提炼的精油富含多种单萜、倍半萜等挥发性活性成分,具备杀菌、抗炎、抗氧化等功效,具有较高的经济价值。多倍化和转座子插入与植物基因组变异和次生代谢产物多样密切相关,但其对于唇形科植物化学多样性的具体贡献,缺乏深入研究。 中国
世界首个人类早期胚胎DNA甲基化全景观图谱
记者25日从北京大学第三医院获悉,该院生殖医学中心乔杰研究组与北京大学生命科学学院生物动态光学成像中心汤富酬研究组合作,绘就了世界首个人类早期胚胎DNA甲基化全景观图谱。这一成果日前已在线发表于《自然》,影响因子达38.597。 据介绍,哺乳动物的胚胎发育起始于单个受精卵细胞,父母的表观遗传记
Nat-Com:多功能蛋白或可阻断寄生基因进行“跳跃”
近日研究发现,大多数生物包括人类都有一种叫做“跳跃基因”的寄生DNA片段,它们将自己插入到DNA分子中破坏遗传程序。这一现象会导致与年龄相关疾病的产生,如癌症。但是罗彻斯特大学的研究人员报告说,在小鼠实验中,当多功能蛋白质为执行另一种功能而阻止它们受控制时,老鼠的“跳跃基因”就变得异常活跃。
Nature:北大绘就首个人类早期胚胎DNA甲基化全景观图谱
近日,北京大学交叉研究取得重要研究成果:绘就出世界首个人类早期胚胎DNA甲基化全景观图谱。此项研究工作为人们提供了一个全面的人类早期胚胎DNA甲基化调控网络的研究框架,对于人类认识自身早期胚胎发育过程中表观遗传调控机制、辅助生殖技术的安全性评估与改善,以及临床上疑难病例的诊治均具有非常重要的意义
分子遗传学词汇外显子混编
当两个转座子被同一转座酶识别而整合到染色体的临近位置时,则它们之间的DNA将变得易于被转座酶作用而转座。如果它们之间的DNA中含有外显子,则该外显子将被切离,并可能插入另一基因之中。这种效应称为外显子混编。中文名称:外显子混编定 义:混编而成基因片段可能就是外显子
复旦大学发现机体能量代谢和肥胖调控新机制
复旦大学吴晓晖课题组利用piggyBac转座子插入突变小鼠资源,发现了G蛋白偶联受体GPR45在肥胖发生发展中的重要作用,并阐明了GPR45调控阿黑皮素原(POMC)表达及机体能量代谢的分子机制。相关成果日前发表于《临床研究杂志》。 研究人员利用piggyBac转座子插入诱变小鼠资源筛选体
中科院Cell子刊解析piRNA作用通路
来自中科院上海生命科学研究院的研究人员近日在新研究中证实,piRNA在精子发生后期通过APC/C触发了MIWI泛素化及MIWI/piRNA机器清除。这一研究发现对于深入了解piRNA作用通路在哺乳动物精子发生中的功能机制具有重要意义。相关论文发布在1月14日的《发育生物学》(Developmen
关于基因重组的自然重组的介绍
自然界不同物种或个体之间的基因转移和重组是经常发生的,它是基因变异和物种进化的基础。自然界的基因转移的方式有: 接合作用:当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA就可从一个细胞(细菌)转移至另一细胞(细菌),这种类型的DNA转移称为接合作用(conjugation )。 转化作用(
关于外显子混编的介绍
当两个转座子被同一转座酶识别而整合到染色体的临近位置时,则它们之间的DNA将变得易于被转座酶作用而转座。如果它们之间的DNA中含有外显子,则该外显子将被切离,并可能插入另一基因之中。这种效应称为外显子混编。 即新的基因是由原来的基因打断后的断片混编而成的,或者是由编码蛋白质结构域的基因片段混编
北京基因组所等揭示人类胚胎发育和进化机制
人类的生命从受精卵开始。一个受精卵如何发育成一个含有200多种细胞类型、36个重要器官的复杂有机体,是生命科学最大的难题之一。已知发育的进行需要体内基因能够按照设定程序、在特定时间和特定地点有序地表达,这个过程称为基因表达的编程。就像计算机程序的运行需要使用计算机语言来编程一样,人体设定基因表达
什么是DNA插入元件?
中文名称插入元件英文名称insertion element定 义能在基因(组)内部或基因(组)间改变自身位置的一段DNA序列。通常是转座子的一种,一般长度为0.7~1.4 kb,只能引起转座效应而不含有其他任何基因。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
细胞化学词汇插入元件
中文名称:插入元件英文名称:insertion element定 义:能在基因(组)内部或基因(组)间改变自身位置的一段DNA序列。通常是转座子的一种,一般长度为0.7~1.4 kb,只能引起转座效应而不含有其他任何基因。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)
新衰老机制:自私基因加剧炎症以及和衰老相关疾病
衰老影响着每一个生物,但是导致衰老的分子过程仍然是一个有争议的话题。虽然许多因素都促进衰老过程,但动物衰老的一个共同主题是炎症——这可能被一类自私的遗传因子放大。 人类的基因组中到处都是自私的遗传基因,这些重复的基因似乎对宿主没有好处,反而只想通过在宿主基因组中插入新的拷贝来扩增自己。一类被称
复旦大学研究人员寻找与肥胖相关遗传密码
肥胖,是现代社会面临的重大健康挑战。遗传学家们则将寻找到与肥胖相关的基因作为目标。 近期,在国家自然科学基金项目(项目编号:81570756、81170789)等资助下,复旦大学生命科学学院教授吴晓晖与许田合作,用自行研发技术获得的突变小鼠资源,发现了一种G蛋白偶联受体“Gpr45”与肥胖发
复旦大学研究人员寻找与肥胖相关遗传密码
肥胖,是现代社会面临的重大健康挑战。遗传学家们则将寻找到与肥胖相关的基因作为目标。 近期,在国家自然科学基金项目(项目编号:81570756、81170789)等资助下,复旦大学生命科学学院教授吴晓晖与许田合作,用自行研发技术获得的突变小鼠资源,发现了一种G蛋白偶联受体“Gpr45”与肥胖发生