生化与细胞所等研究发现小鼠PIWI/piRNA代谢调控机制

国际知名学术期刊Developmental Cell于1月13日发表了中科院上海生命科学研究院生化与细胞所刘默芳组、王恩多组关于piRNA在精子发生后期触发小鼠PIWI(MIWI)蛋白经 APC/C-泛素途径降解的最新研究成果。该工作与李劲松研究员、上海计划生育研究所施惠娟研究员、美国路易斯维尔大学李勇教授、中科院上海生命科学信息中心李党生研究员等合作完成。 生殖系细胞担负着遗传信息的世代传递,其基因组的完整性对个体发育和物种传递都至关重要。真核生物基因组中存在着大量外来入侵的转座子、逆转座子等移动型遗传元件(如转座子、逆转座子及其化石序列就分别占了人和小鼠基因组的46%和39%),这些自私型遗传元件是引发基因组突变和不稳定的主要因素。piRNA(PIWI-interacting RNA)是继miRNA之后在2006年发现的一类新型小分子非编码RNA,其大小在26-32个核苷酸之间,特异性地在动物生殖细胞中......阅读全文

生化与细胞所等研究发现小鼠PIWI/piRNA代谢调控机制

  国际知名学术期刊Developmental Cell于1月13日发表了中科院上海生命科学研究院生化与细胞所刘默芳组、王恩多组关于piRNA在精子发生后期触发小鼠PIWI(MIWI)蛋白经 APC/C-泛素途径降解的最新研究成果。该工作与李劲松研究员、上海计划生育研究所施惠娟研究员、美国路

Cell子刊:生殖细胞的piRNA通路大名单

  转座子广泛存在于生物的基因组中,能够自我复制,并随机插入到染色体上,因此又被称为跳跃基因。转座子在生殖细胞中特别危险,可能导致不孕或对后代发育产生严重影响。在进化过程中,复杂生物形成了一套生殖细胞基因组的防御机制,这一机制被称为piRNA通路。   冷泉港实验室(CSHL)Gregory

中科院Cell子刊解析piRNA作用通路

  来自中科院上海生命科学研究院的研究人员近日在新研究中证实,piRNA在精子发生后期通过APC/C触发了MIWI泛素化及MIWI/piRNA机器清除。这一研究发现对于深入了解piRNA作用通路在哺乳动物精子发生中的功能机制具有重要意义。相关论文发布在1月14日的《发育生物学》(Developmen

Cell发布piRNA重要发现

  来自东京大学的一个研究小组鉴别出了一种叫做“Trimmer”酶,其参与生成了保护生殖细胞基因组免遭不必要遗传重写的一类小RNA。  “跳跃基因”(又称转座子)是可以在基因组中四处移动的DNA小片段。它们可以破坏宿主基因,与癌症和其他一些疾病有关联。因此,生物体需要控制它们,尤其是在生成动物精子和

北京大学Nature发布重要甲基化景观图

  来自北京大学、教育部辅助生殖重点实验室、哈佛大学等机构的研究人员,绘制出了人类早期胚胎全基因组水平的DNA甲基化景观图谱,提出了有别于以往小鼠研究结果的一些新见解。这些研究结果发表在7月23日的《自然》(Nature)杂志上。  北京大学第三医院的乔杰(Jie Qiao)教授以及汤富酬(Fuch

酵母菌基因组转座子的诱变实验

实验方法原理 实验材料 诱变转座子基因组文库质粒DNA试剂、试剂盒 10×TE缓冲液 pH 8.0无菌 E. coli tets kans (如 DH5c×)14 cm的LB培养基平板培养基中加入3 mg mL的四环素和40μg mL的卡那霉素LB培养基丙三醇无菌NotⅠ非限制性内切核酸酶及

酵母菌基因组转座子的诱变实验

基本方案 小载体聚合酶链反应 mTn诱变基因产物的表位标记             实验方法原理 实验材料

动物所小鼠精子发生过程中DNA羟甲基化研究获进展

  中科院动物研究所计划生育生殖生物学国家重点实验室韩春生研究组6月13日在Nature Communications上发表题为Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis的学术论文,阐述了小鼠精子发生过程中

同济大学翁志萍等揭示机体对于piRNA入侵的应答机理

  反义Piwi相互作用RNA(piRNA)指导生殖细胞发育过程中已建立的转座子的沉默,正义piRNA驱动反义Piwi池的乒乓扩增,但生殖细胞如何响应基因组入侵尚不清楚。  2019年10月10日,同济大学翁志萍,麻省大学医学院William E. Theurkauf及昆士兰大学Keith Chap

中科院Cell-Res发表非编码RNA研究新成果

  来自中科院上海生命科学研究院的研究人员近日在新研究中证实,在精子发生后期粗线期piRNAs导致了大量的mRNA消失。这一研究发现发表在5月2日的《细胞研究》(Cell Research)杂志上。  中科院上海生命科学学院的刘默芳(Mo-Fang Liu)研究员是这篇论文的通讯作者,其研究方向是非

Cell子刊:piRNA,DNA的贴身保镖

  生殖细胞的DNA一直处于严密的保护之下,欧洲分子生物学实验室EMBL的研究团队日前为人们揭示了这个至关重要的保护机制,相关论文发表在七月九日的Cell Reports杂志上。  转座子又称为跳跃基因,是一种“自私”的DNA链。转座子能够进行自我复制,还能在染色体不同位点之间跳跃,会导致基因失活甚

可爱龙教授Cell评述重要结构生物学进展

  在所有的非编码RNA中, piRNA 数量最多, 主要存在于生殖系统,这种RNA在动物生殖组织中可以引导PIWI蛋白质沉默有害的转座子。其关键作用复合物:piRNA诱导沉默复合体piRISC的生物合成涉及多个步骤,至今科学家尚未清楚了解这个步骤的分子机制。  近期一组研究人员报道了PIWI-cl

Cell免费论文:转录调控的新思路

  来自奥地利维也纳分子生物技术研究所的研究人员发现了转座子和piRNA对染色质模式,以及基因表达的广泛影响,对于未来深入探索这一沉默途径,以及染色质状态基因表达具有重要的意义。相关成果公布在Cell杂志上,目前可免费获取。   领导这一研究的是分子生物技术研究所的Julius Brennecke

酵母菌基因组转座子的诱变实验——基本方案

实验材料诱变转座子基因组文库质粒DNA试剂、试剂盒10×TE缓冲液 pH 8.0无菌 E. coli tetskans (如 DH5c×)14 cm的LB培养基平板培养基中加入3 mg mL的四环素和40μg mL的卡那霉素LB培养基丙三醇无菌NotⅠ非限制性内切核酸酶及缓冲液Ura3_酵母菌培养一

研究揭示人逆转座子LINE1靶向整合基因组机制

中国科学院生物物理研究所许瑞明、朱冰和薛愿超课题组合作,系统揭示了人逆转座子LINE-1靶向整合基因组的重要机制。该研究刷新了对LINE-1逆转座机制的认知,也为基于逆转座调控的药物研发提供了新的理论依据。相关研究成果10月9日发表于《科学》杂志。类基因组中存在大量具有“跳跃”能力的逆转座子序列。这

Science:基因组卫士piRNA如何发挥作用?

   piRNA(Piwi-interacting RNA)被称为基因组的卫士,它与特定蛋白相互作用形成分子防御系统,来捍卫基因组的稳定性。那么,piRNA究竟如何区分外源和内源的基因序列呢?芝加哥大学的研究人员近日找到答案并发表在《Science》杂志上。  piRNA是一类长度约为26-31 n

Science揭示基因组的捍卫者

  从细菌到人类,生物体都必须要保护自身对抗称作为转座子的寄生遗传元件,并且赌注下得很大。这些DNA片段可在基因组中四处跳跃破坏基因,其可以造成极大的破坏因此细胞有专门的监视机制来抑制它们。  为了保护后代对抗基因组破坏,这些天然防御系统发生缺陷通常会导致不育不孕。在动物中,对抗捣乱转座子的主要防御

转座子及转座子标签法克隆基因的改进

1 转座子及转座子标签法克隆基因基因标签法克隆植物组织中的基因是较为常用的一种方法,T-DNA和转座子均可作为基因标签。转座子最早由美国的细胞遗传学家Mc-clintock在玉米中发现,它是指基因组中一段特定DNA片段,能在转位酶的作用下从基因组的一个位点转移到另一个位点。转座子不仅能在本基因组中转

研究发现水稻转座子受驯化选择和抗病抗逆中的调节功能

  6月19日,Molecular Plant 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究组题为Elimination of a retrotransposon for quenching genome instability in modern rice 的研究

武汉植物园发现桃基因组转座元件的进化机制

  桃原产于我国,驯化和栽培历史超过三千年,桃花形态和颜色多样,集中在早春时节开放,成为春季主要的观赏景观之一,自2千多年前成书的《诗经》开始,一直是历代诗人反复歌咏的对象。而桃的果实风味鲜美、营养丰富,深受人们喜爱。桃自交亲和且基因组很小(230Mb左右),但品种间的表型差异相当丰富。  中国科学

转座子-Tol2-的转座机制与转座优势详述(二)

当然,实践是检验真理的唯一标准,2009年,Zoltán Ivics等[3]就为大家详细阐述了Tol2转座机制在鼠中的应用,具体流程如图3,通过不断地表型筛选,Tol2系统可以用于构建转基因鼠和稳定的基因表达细胞系。 图3 利用Tol2构建转基因鼠和基因表达细胞系[3]3、Tol2转座优势与传统的转

RNA研究先驱Nature获piRNA突破性新发现

  来自冷泉港实验室的科学家们取得重要进展,了解保护动物基因组防止称作转座子的潜在危险遗传元件这一过程的最早期步骤。如果失去控制,这些基因组寄生物可能会肆意泛滥,导致不育。   冷泉港实验室的Gregory J. Hannon教授和Leemor Joshua-Tor共同领导了这一研究。Hann

转座子-Tol2-的转座机制与转座优势详述

  转基因,岂能不知Tol2 ?   Tol2转座子    提及转基因,大家首先映入脑海的是什么呢?转基因大豆?玉米?食用油?(对于那些一个都想不到的孩纸们,小编我只想哭晕在厕所)名词很熟悉,各大超市随处可见,可何为转基因,如何得到转基因产品?今天小编简单来跟大家聊一聊。    所谓转

转座子-Tol2-的转座机制与转座优势详述

  转基因,岂能不知Tol2 ?   Tol2转座子    提及转基因,大家首先映入脑海的是什么呢?转基因大豆?玉米?食用油?(对于那些一个都想不到的孩纸们,小编我只想哭晕在厕所)名词很熟悉,各大超市随处可见,可何为转基因,如何得到转基因产品?今天小编简单来跟大家聊一聊。    所谓转

中国农业大学最新报道可抑制口蹄疫病毒的转基因山羊

  科学通报,中国科学C辑:生命科学,这两份期刊均是由中国科学院和国家自然科学基金委员会共同主办的,我国学术期刊中的知名品牌,被国内外各主要检索系统收录,如国内的《中国科学论文与引文数据库》(CSTPCD)、《中国科学引文数据库》(CSCD)等;美国的SCI、CA、EI,英国的SA,日本的《科技文献

酵母菌基因组转座子诱变实验—​mTn诱变基因产物表位标记

实验材料mTn诱变酵母菌株试剂、试剂盒pGAL-cre含有2% (W V)棉籽糖的-Leu-Ura Raff CM缺失成分培养基平板和培养基含有2% {m V)半乳糖的-Leu Gal CM缺失成分培养基含有2% (m V)葡萄糖的-Leu Glc CM缺失成分培养基5-FOA培养基平板(5-FOA

小RNA领域牛人Science发表重要研究成果

  来自奥地利科学院分子生物技术研究所(IMBA)的研究人员,揭示出了细胞利用来生成一类生殖细胞特异性的小分子调控RNAs——piRNAs的分子机制。他们的研究结果发表在5月15日的《科学》(Science)杂志上。  领导这一研究的是IMBA的分子生物学家Julius Brennecke,这位学者

-美研究员报告称完成“生命暗物质”基因组测序

  正当物理学家苦苦寻找宇宙暗物质之际,美国研究人员10日报告说,他们完成了对“生命暗物质”的基因组测序。   1996年,科学家首次发现了一种名为“候选门TM6”的细菌。这种细菌广泛存在于水环境中,却无法在实验室中培养,除了其标志性的16S基因外,科学界对它的生命活动特点几乎一无所知。正因此,“

灵长类动物非病毒基因传递系统出炉

长期以来,由于病毒基因传递方法的局限性,非人类灵长类动物的基因工程进展受限。现在,日本科学家采用了一种非病毒基因传递系统,成功将人工基因引入了与人类亲缘关系较近的食蟹猴体内。该成果被认为是基因工程领域的里程碑,相关研究发表在最新一期《自然·通讯》杂志上。小型动物模型如小鼠,在模拟人类疾病复杂性方面存

自闭症相关蛋白POGZ抑制2C基因和逆转录转座元件

  神经发育障碍疾病(如自闭症和儿童多动症)的发病率在世界范围内呈现不断攀升的趋势。基因组测序研究表明,自闭症是高异质性遗传发育疾病。根据个体遗传背景的不同,患者表现出不同程度的神经系统功能异常,如智力、语言、运动行为缺陷等。然而,由于目前缺乏对疾病病因的深入认知,临床上尚无有效的治疗手段。  内源