量子点多色成像揭示乳腺癌标志物的原位分子表达谱

华盛顿大学X. H. Gao教授和埃默里大学R. M. O’Regan教授课题组,将525 nm, 565 nm, 605 nm, 655 nm 和705 nm发射波长的量子点,直接与HER2, ER, PR, EGFR 和 mTOR的一抗进行偶联。上述分子是临床重要的乳腺癌标志物,对于乳腺癌诊断、预后及个性化治疗具有重要意义。该课题组将量子点偶联抗体用于石蜡包埋组织切片染色,并进行了光谱定量分析,同时与IHC、Western blotting(WB)、FISH等方法进行比较。其研究结果显示,当蛋白表达水平较低时,量子点的定量光谱分析比传统IHC方法更精确,同时与WB方法相关性良好;FISH分析中,HER2基因扩增与基于量子点检测的HER2蛋白表达相关性良好,而且量子点偶联抗体可用于检测低水平的HER2蛋白表达。总之,量子点偶联抗体可以很好地适用于肿瘤标志物的体外分子谱检测分析,其优势主要表现为:①量子点的荧光亮......阅读全文

基于量子点的多轮次多色原位成像技术

题目:Nature communications:基于量子点的多轮次多色原位成像技术摘要:基于量子点-Protein A-抗体的偶联物,对同一样品进行多轮次的多色共染,利用荧光光谱仪分析,具有同时获取单细胞内50-100个靶标分子信息的潜能。华盛顿大学Gao Xiaohu课题组,利用Protein

基于量子点的在体、实时、多色淋巴结成像

量子点(Quantum dots,QDs)的荧光亮度非常高,同时发射光谱狭窄而对称,半峰宽小于30nm,可实现单一波长的多色激发,而且多个发射光之间的相互干扰小,因而在可见光范围内能够实现五种不同颜色的同时成像观察。NIH研究人员Kobayashi H等,将五个不同发射波长的量子点(ca

量子点单分子成像助力CRISPR机制研究

量子点(Quantum dots)做为无机合成的纳米材料,具有超越传统荧光染料的独特光学性质,比如荧光亮度高、无需避光、不会淬灭,是新一代的优质荧光探针。单分子成像(single-molecule imaging)技术中,将荧光探针用于单分子标记,要求荧光亮度高以满足灵敏度和分辨率的需求,同时要求观

量子点活细胞成像应用的实验方案

量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的荧光亮度是传统荧

LIFE-TECH-Tali-成像型多色细胞分析仪

              Tali™ 成像型多色细胞分析仪 快速细胞分析新技术   Tali™ 成像型多色细胞分析仪能让你随时,简便快速的检测GFP和RFP表达,判断细胞存活

量子点活细胞成像应用的实验方案建议

   量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。    Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的

量子点多色成像显示临床组织样品的肿瘤异质性分子图谱

肿瘤异质性(Tumor heterogeneity)是肿瘤发生发展机制研究及肿瘤细胞根除治疗方法探寻所面临的巨大挑战。肿瘤异质性广泛存在于各种肿瘤(尤其是乳腺癌和前列腺癌具有高度异质性),但是检测和评估方法尚欠缺。目前的技术如RT-PCR, gene chips, protein chi

三维多色超分辨成像应用的开发与实现

  近日,南方科技大学生物医学工程系教授吴长锋课题组成功开发了一系列高亮度聚合物点荧光探针,通过荧光探针功能化和扩展成像技术,在普通荧光显微镜上可以观察到精细的亚细胞结构,分辨率高达30 nm。相关成果发表在材料领域知名期刊Advanced Materials(DOI: 10.1002/adma.2

原来纳米粒子可以对生物分子进行多色成像

  为了了解生物细胞如何运作,生命科学家追踪组成细胞的生物分子。 这样做最有效的方法是用金纳米颗粒标记分子,并跟踪纳米颗粒散射的激光。日本国立自然科学研究院(NINS)的一个小组现在已经扩展了这种方法,使科学家可以更精确地跟踪单个和多个生物分子。 该小组写道:“我们的方法将为研究复杂生物分子系统的运

BioRad-ChemiDoc-MP多色荧光成像系统耀世登场

  全能型成像分析系统ChemiDoc MP可以进行普通成像、化学发光成像、多通道荧光成像,是一台大而全的新系统。ChemiDoc MP是一个高端实验室的明智之选。它同时提供出色的灵敏度和广泛的适应性。使用ChemiDoc MP成像系统,可以为您带来以下优点:  快速获得实验结果,无

三维多色超分辨成像应用的开发与实现

  近日,南方科技大学生物医学工程系教授吴长锋课题组成功开发了一系列高亮度聚合物点荧光探针,通过荧光探针功能化和扩展成像技术,在普通荧光显微镜上可以观察到精细的亚细胞结构,分辨率高达30 nm。相关成果发表在材料领域知名期刊Advanced Materials。  超分辨光学成像因其能够提供低于衍射

微生物细胞体内实现多色荧光信号的同时成像

  荧光蛋白的发现革新了生命科学的研究,应用荧光蛋白可以观测到细胞内部的活动,例如荧光蛋白可以标记特定的蛋白,也可以作为报告探针用于检测特定基因的活性。荧光蛋白的开发和进化使其光谱得到了全面的扩展,也使得多个荧光蛋白的同时使用成为可能。  目前,多色成像较多局限于两个荧光蛋白的同时使用。通常是选取两

我国学者研制多色荧光成像技术,可精准分离特定信号

  荧光蛋白的发现革新了生命科学的研究,应用荧光蛋白可以观测到细胞内部的活动,例如荧光蛋白可以标记特定的蛋白,也可以作为报告探针用于检测特定基因的活性。荧光蛋白的开发和进化使其光谱得到了全面的扩展,也使得多个荧光蛋白的同时使用成为可能。图:(左)1-4色荧光报告系统的质粒系统示意图,(右)串色校正后

近红外量子点用于败血症小鼠脑血栓在体成像

近红外成像可用于小鼠在体深层组织成像,包括淋巴结、肿瘤以及脑血管等。第二近红外窗口(1000-1400nm)荧光材料与第一近红外窗口(750-1000nm)材料比较,血液与组织的吸收及散射小,对活体组织具有更深的穿透能力,成像时呈现更高的信噪比。虽然单壁碳纳米管、稀土材料、硫化银量子点等均在第二近红

近红外量子点生物探针用于肿瘤靶向成像和肿瘤切除

早期检测和随后的手术完全切除是治疗癌症最有效的方法 , 然 而检测灵敏度低和不能完全确定肿瘤边缘部位是治疗时面临的两个挑战性的问题,基于纳米颗粒的影像引导手术治疗已被证明是肿瘤靶向成像和随后的减瘤手术的有 效方法,近红外荧光探针,如近红外量子点具有深层组织渗透性和较高的灵敏度可用于肿瘤检测。本研究中

消色点的概念

中文名称消色点英文名称achromatic point定  义用淀粉酶水解淀粉的过程中,淀粉液与碘不再发生呈色反应的时间点。出现此点,表明淀粉已经被水解。应用学科生物化学与分子生物学(一级学科),方法与技术(二级学科)

量子点多色成像揭示乳腺癌标志物的原位分子表达谱

华盛顿大学X. H. Gao教授和埃默里大学R. M. O’Regan教授课题组,将525 nm, 565 nm, 605 nm, 655 nm 和705 nm发射波长的量子点,直接与HER2, ER, PR, EGFR 和 mTOR的一抗进行偶联。上述分子是临床重要的乳腺癌标志物,对于乳腺

14色多色流式固有免疫分型

                                                                                                        固有免疫(innate  immunity):        

无标记活细胞成像系统助力量子点用于细胞死亡表征的...

   细胞死亡机制的研究一直是生命科学领域的研究热点。通常,细胞死亡(细胞凋亡、自噬、坏死)的检测需要间接的荧光标记配合不同检测方法。然而,这些方法无法实时监测细胞死亡过程中的内部状况,也无法同时鉴定毒性物质和细胞死亡过程。因此间接标记越来越难以满足细胞死亡过程实时监测的需求。量子点(quantum

苏州纳米所硫化银近红外量子点细胞成像研究进展

  自1998年Alivisatos和聂书明等首次提出将量子点(Quantum dots, QDs)作为荧光标签应用到生物医学研究中,量子点作为一种重要的生物标记与成像纳米光学探针,在分子检测、细胞标记和活体成像中发挥着越来越重要的作用。然而,由于可见荧光量子点对活体组织的穿透能力较

碳点和碳量子点的区别

一、含义不同:量子点一般是从铅、镉和硅的混合物中提取出来的,但这些量子点一般有毒,对环境也有很大的危害。所以科学家们寻求在一些良性的化合物中提取量子点。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。它的研究代表了发光纳米粒子研究进入了一个新的阶段。二、用途不同:碳点(CDs

量子点控制方法找到

  据来自剑桥大学的消息,该校研究人员日前找到了能够控制半导体量子点中原子核排列的方法,从而为开发量子存储器提供了可行途径。  量子点是由数千个原子组成的晶体,每一个原子都与被捕获的电子发生磁相互作用。如果不干涉的话,这种拥有核自旋的电子相互作用,限制了电子作为量子比特(量子位)的作用。剑桥大学卡文

量子点是什么技术

量子点实际上是纳米半导体。通过施加一定的电场或光的压力,这些纳米半导体材料,它们会发出特定频率的光,这种半导体的频率变化,通过调节纳米半导体的大小可以控制它发出的光的颜色,由于纳米半导体具有有限的电子和空穴(电子眼)的特点,这一特点在本质上是相似的原子或分子被称为量子点。量子点是重要的低维半导体材料

量子点LED应用方案

应用背景量子点发光二极管(Quantum dot light-emitting diode,简称QLED)是一种以量子点为发光层的电致发光器件,其结构和发光原理与有机发光二极管相似。量子点(Quantum dots,简称QD)是一类纳米尺寸的半导体材料,通常呈胶体状态,常见的

量子点生物应用指南

量子点是尺寸在 1-100 纳米的半导体材料(包括Ⅱ-Ⅵ族,Ⅲ-Ⅴ族,Ⅳ族等),具有明显的量子效应。与传统的有机荧光染料相比,具有灵敏度高,稳定性好,荧光寿命长等优势。量子点的特殊的光学性质使得它在光化学、分子生物学、医药学等研究中有极大的应用前景。量子点最有前途的应用领域就是作为荧光探针应用于生物

量子点表征,最新Nature

  理解和控制开放量子系统中的退相干、实现长相干时间对量子信息处理是至关重要的。尽管目前单个系统上已经取得了巨大进展,单自旋的电子自旋共振(ESR)被证明具有纳米级别的分辨率,但要进一步理解许多复杂固态量子系统中的退相干需要将环境控制到原子级别,这可能要通过扫描探针显微镜的原子/分子表征和操作能力实

植物多光谱荧光成像系统多激发光、多光谱荧光成像技术

  多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应

广州华粤行化学发光和多色荧光成像技术巡回讲座预告

UVItec Alliance系列化学发光和多色荧光成像系统全国巡回讲座   【上海站】--------【南昌站】-------【武汉站】-----【更多精彩活动·敬请关注】   2011-4-12   2011-4-20   2011-5月   近年来,化学发光和多色荧光成像技术发展迅猛,为

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

多色菌落的分类检测

  多色菌落,是微生物检测中常常遇到的现象。不同颜色的菌落往往代表不同的细菌,对多色菌落的分类检测也就成为一项重要的工作。目前,对多色菌落的自动分类一般采用彩色立方体的方法来进行。这种方法操作简单,但效果往往不好。这是因为:   (1)属于同一种颜色的各个菌落,其表面颜色并非完全一样,有时还往往存