Antpedia LOGO WIKI资讯

aes检测器理论知识

原子发射光谱(ICP/AES)理论知识(8)——检测器 在原子发射光谱中,被检测的信号是元素的特征辐射,常用的检测方法有目视法,摄谱法和光电法。 一、 目视法 目视法是用眼睛观察试样中元素的特征谱线或谱线组,以及比较谱线强度的大小来确定试样的组成及含量。由于眼睛感色范围有限,工作波段仅限于可见光区400~700nm范围。常用的仪器称看谱镜,是一种小型简易的光谱仪,主要用于合金钢、有色金属合金的定性和半定量分析。 二、 摄谱法 摄谱法是将感光板置于分光系统的焦面处,接受被分析试样的光谱的作用而感光(摄谱),再经过显影、定影等操作制得光谱底片,谱片上有许多距离不等、黑度不同的光谱线。然后.在映谱仪上观察谱线的位置及大致强度,进行定性分析及半定量分析;在测微光度计上测量谱线的黑度,进行光谱定量分析。 感光板上谱线的黑度与曝光量有关,曝光量越大,谱线愈黑。曝光量用H表示,它等于照度E与曝光时间的乘积,而照度又与辐射强......阅读全文

aes检测器理论知识

  原子发射光谱(ICP/AES)理论知识(8)——检测器  在原子发射光谱中,被检测的信号是元素的特征辐射,常用的检测方法有目视法,摄谱法和光电法。  一、  目视法  目视法是用眼睛观察试样中元素的特征谱线或谱线组,以及比较谱线强度的大小来确定试样的组成及含量。由于眼睛感色范围有限,工作波段仅限

原子发射光谱(ICP/AES)理论知识(8)——检测器

  原子发射光谱(ICP/AES)理论知识(8)——检测器  在原子发射光谱中,被检测的信号是元素的特征辐射,常用的检测方法有目视法,摄谱法和光电法。  一、  目视法  目视法是用眼睛观察试样中元素的特征谱线或谱线组,以及比较谱线强度的大小来确定试样的组成及含量。由于眼睛感色范围有限,工作波段仅限

ICP-AES 干扰

1. 光谱干扰 ICP-AES的光谱干扰其数量很大而较难解决,有记录的ICP-AES的光谱谱线有50000多条,而且基体能引起相当多的问题。因此,对某些样品例如钢铁、化工产品及岩石的分析必须使用高分辨率的光谱仪。广泛应用于固定通道ICP-AES中的干扰元素校正能得到有限度的成功。ICP-AES中的背

ICP-AES仪器构成

  基本组成  ICP-AES分析仪器主要由样品导入系统、检测器、多色器和RF发生器构成。    ICP-AES分析仪器的基本组成  样品导入系统  样品导入系统由蠕动泵、雾化器、雾化室和炬管组成。  进入雾化器的液体流,由蠕动泵控制。泵的主要作用是为雾化器提供恒定样品流,并将雾化室中多余废液排出。

AES、STM、AFM的区别

AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、一、名称不同1、AES,英文全称:Auger Electron Spectroscopy,中文称:俄歇电子能谱2、STM,英文全称: Scanning Tunneling Microscope,中文称:扫描隧道显微镜3、AFM,英文

AAS、AES、AFS异同点

 AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。  “光谱三兄弟”简介  AAS(原子吸收光谱):  基于气态的基

AAS、AES、AFS异同点

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。    “光谱三兄弟”简介     AAS(原子吸收光谱):   

元素分析方法:ICP-AES

AES(原子发射光谱)测试原理:处于激发态的待测元素的原子回到基态时,发射的特征谱线。定性分析:是根据特征谱线,原子结构不同对应不同的谱线定量分析:根据特征谱线的强度,与待测原子浓度成比例关系测试原理过程的示意图:首先测试样品前处理,利用等离子体光源(ICP)使样品蒸发汽化,离解或者分解为原子状态,

ICP-AES常见问题

  电感耦合等离子体原子发射光谱法(ICP-AES),是以电感耦合等离子矩为激发光源的光谱分析方法,具有准确度高和精密度高、检出限低、测定快速、线性范围宽、可同时测定多种元素等优点,国外已广泛用于环境样品及岩石、矿物、金属等样品中数十种元素的测定。今天,我们为您带来ICP-AES分析常见12个故障问

ICP-AES的方法原理

电感耦合等离子体焰矩温度可达6000~8000K,当将试样由进样器引入雾化器,并被氩载气带入焰矩时,则试样中组分被原子化、电离、激发,以光的形式发射出能量。不同元素的原子在激发或电离后回到基态时,发射不同波长的特征光谱,故根据特征光的波长可进行定性分析;元素的含量不同时,发射特征光的强弱也不同,据此