小分子醇/盐二元双水相体系分离/萃取抗生素的研究

抗生素由于其稳定的药效被越来越多的使用到医疗事业、禽畜饲养当中,达到了快速高效治愈人类和动物的多种疾病,有效控制疫情传播的效果。但是不加控制使用抗生素也会给自然环境跟人类健康带来无法预计的反作用,严重威胁着人类生存。因此建立一种高效分离、绿色节能抗生素检测手段尤为迫切。 小分子有机溶剂双水相萃取体系作为一种新型的分离体系,已经引起了研究学者们的日益关注,由于该分离技术操作简单,萃取条件温和,不会使物质失活变性,且小分子有机物成本低廉,易于实验放大,因此在生物、医药、环境、食品等领域得到了广泛的应用。已有的小分子有机物双水相体系萃取技术大多采用一元体系进行萃取,对于二元体系的研究十分少见。本课题根据双水相萃取技术的成相原理,在一元双水相体系的基础上,利用不同种类的小分子醇溶剂的特性及优点,构建新型的小分子醇二元双水相体系,并将其应用于环境中四环素类抗生素残留的分离/富集。为抗生素残留的分析、检测研究提供了新的实验依据。 本课题基于......阅读全文

小分子醇/盐二元双水相体系分离/萃取抗生素的研究

抗生素由于其稳定的药效被越来越多的使用到医疗事业、禽畜饲养当中,达到了快速高效治愈人类和动物的多种疾病,有效控制疫情传播的效果。但是不加控制使用抗生素也会给自然环境跟人类健康带来无法预计的反作用,严重威胁着人类生存。因此建立一种高效分离、绿色节能抗生素检测手段尤为迫切。 小分子有机溶剂双水相萃取体系

小分子醇/盐二元双水相体系分离/萃取四环抗生素的研究

抗生素由于其稳定的药效被越来越多的使用到医疗事业、禽畜饲养当中,达到了快速高效治愈人类和动物的多种疾病,有效控制疫情传播的效果。但是不加控制使用抗生素也会给自然环境跟人类健康带来无法预计的反作用,严重威胁着人类生存。因此建立一种高效分离、绿色节能抗生素检测手段尤为迫切。 小分子有机溶剂双水相萃取体系

双水相体系用于生物分子的分离

  双水相体系是一种高效的萃取体系,由于离子液体的可设计性,基于离子液体的双水相体系应用更加广泛。理想的双水相体系应具有优异相分离行为、较低粘度和高效萃取效率等特性,完全的两相分离是实现高选择性萃取的前提。然而在无机盐存在下,离子液体会出现盐析现象。浙江大学邢华斌教授课题组通过可逆加成-断裂链转移聚

双水相萃取体系在分离纯化芦荟活性成分中的应用研究

论文研究了PEG/盐、浊点萃取、醇/盐和离子液体/盐四种双水相体系,并成功将其应用到萃取、分离和纯化芦荟中的蒽醌、多糖类物质。 首先,采用星点设计-响应面法分别优化了芦荟中的蒽醌和多糖类物质提取工艺。分别考察了乙醇浓度、提取温度和液固比对蒽醌得率的影响;提取温度、提取时间和液固比对多糖得率的影响。采

双水相萃取

一些高分子水溶液(如分子量从几千到几万的聚乙二醇硫酸盐水溶液)可以分为两个水相,蛋白质在抄两个水相中的溶解度有很大的差别。故可以利用双水相萃取过程分离蛋白质等溶于水的生物产品。双水相的优势  ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等袭的提取、纯化表现出以下优势:  (1)含水量

离子液体双水相萃取分离生物活性物质及其机理的研究

双水相萃取技术是提取和纯化生物活性物质的一种新型分离方法,其操作条件温和、易于放大、且可连续操作。离子液体双水相是基于高聚物双水相发展而来的一种高效温和萃取分离体系。与传统的双水相萃取技术不同,离子液体双水相技术采用亲水性的离子液体(ILs)与无机盐的水溶液进行混合,在水中以较高的浓度溶解后形成互不

双水相萃取分离技术的特点及影响因素

1、双水相萃取分离技术的特点:(1)作用条件温和。(2)产品活性损失小。(3)无有机溶剂残留。(4)各种参数可以按照比例放大而不降低产物收率。(5)处理量大。(6)分离步骤少,操作简单,可持续操作。(7)设备投资少。2、双水相萃取分离技术的影响因素:(1)聚合物的影响。(2)双水相系统物理化学性质的

双水相萃取分离技术的特点及影响因素

1、双水相萃取分离技术的特点:(1)作用条件温和。(2)产品活性损失小。(3)无有机溶剂残留。(4)各种参数可以按照比例放大而不降低产物收率。(5)处理量大。(6)分离步骤少,操作简单,可持续操作。(7)设备投资少。2、双水相萃取分离技术的影响因素:(1)聚合物的影响。(2)双水相系统物理化学性质的

双水相萃取的原理

某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous tw

高速逆流色谱双水相体系分离蛋白质

摘要:利用多分离柱高速逆流色谱仪,研究了聚乙二醇1000(PEG1000)-磷酸盐双水相体系的固定相保留率及该体系对蛋白质混合物和鸡蛋清样品的分离,以14.0%PEG1000-16.0%磷酸盐体系的上相为固定相,在流速0.16mL/min和转速900r/min的条件下,固定相的保留率达到33.3%"

双水相萃取技术分离提取谷氨酸脱羧酶的研究

一种既环保又易于操作的生物提取分离技术——双水相萃取技术(ATPS)从超声破壁处理后的大肠杆菌(E.coli)细胞浆中分离提取谷氨酸脱羧酶(GAD)。主要研究内容如下: 首先,建立新型双水相体系,分别考察了分子量2000的聚乙二醇(PEG2000)、六种亲水有机溶剂(CH_3OH、C_2H_5OH、

双水相萃取分离免疫球蛋白和单克隆抗体研究

抗体广泛用于疾病治疗、医疗诊断和免疫分离,具有广阔的市场需求和发展前景。抗体主要从动物血液、腹水和细胞培养液中分离得到,尤其是动物细胞培养制备单克隆抗体,已实现规模化生产。然而,目前抗体分离过程的成本仍旧较高,成为抗体产业发展的一个瓶颈,开发经济高效的抗体分离新方法,具有重要意义。双水相萃取具有生物

双水相萃取技术的应用

双水相萃取技术已广泛应用于生物化学、细胞生物学、生物化工和食品化工等领域,并取得了百许多成功的范例,主要是分离度蛋白质 ,酶,病毒,脊髓病毒和线病毒的纯化,核酸,DNA的分离,干扰素,细胞组织,抗生素,多糖,色素,抗体等知。此外双水相还可用于稀有金属/贵金属分离,传统的稀有金属/贵金属溶剂萃取方法存

双水相萃取技术的简介

早在1896年,Beijerinck发现,当明胶与琼脂或明胶与可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随之分为两相,上相富含明胶,下相富含琼脂(或淀粉),这种现象被称为聚合物的不相溶性(incompatibility),从而产生了双水相体系(Aqueous two phase system,

木瓜蛋白酶的双水相萃取研究

木瓜蛋白酶由于其水解蛋白的能力较强,且具有较宽的pH和温度适应性,所以在食品、药品、日化等行业有较广泛的应用。因此对木瓜蛋白酶的分离纯化技术进行深入研究,提取高品质的木瓜蛋白酶具有重要的应用价值。而传统提取木瓜蛋白酶的方法都存在一些问题,所以有必要寻找制备高品质、高活性木瓜蛋白酶的新方法。双水相萃取

萃取精馏分离二元共沸物的研究

在制药以及精细化工领域,经常面临着溶剂回收再利用的问题,有些溶剂形成共沸物,很难用普通精馏方法分离,萃取精馏分离共沸物可以直接得到需要的产品,本文采用萃取精馏方法分离共沸物。为了得到萃取精馏分离共沸物的普遍适用的方法,本文选取了丙酮和四氢呋喃共沸物、正己烷和四氢呋喃共沸物、正己烷和乙酸乙酯共沸物、乙

双水相萃取水蛭多肽的方案

双水相萃取 3.1 双水相萃取的原理及特点 3.1.1 双水相萃取的原理 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度

在双水相萃取系统中,如何确定加入系统的PEG用量

双水相萃取对于传统有机相-水相的溶剂萃取来说是个全新的替代品。当两种聚合物、一种聚合物与一种亲液盐或是两种盐(一种是离散盐且另一种是亲液盐)在适当的浓度或是在一个特定的温度下相混合在一起时就形成了双水相系统。萃取原理当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水

超临界流体萃取与双水相萃取的异同点

超临界流体萃取技术是以超临界状态下的流体作为溶剂,利用该状态下流体所具有的高渗透能力和高溶解能力萃取分离混合物的过程。常用的是co2超临界萃取法。  co2是安全、无毒、廉价的液体,超临界co2具有类似气体的扩散系数、液体的溶解力,表面张力为零,能迅速渗透进固体物质之中,提取其精华,具有高效、不易

超临界流体萃取、双水相萃取、反胶束萃取的异同点

超临界流体萃取技术是以超临界状态下的流体作为溶剂,利用该状态下流体所具有的高渗透能力和高溶解能力萃取分离混合物的过程。常用的是CO2超临界萃取法。 CO2是安全、无毒、廉价的液体,超临界CO2具有类似气体的扩散系数、液体的溶解力,表面张力为零,能迅速渗透进固体物质之中,提取其精华,具有高效、不易e7

锂同位素萃取分离新体系的研究

锂的两种稳定同位素6Li和7Li因其在能源材料和核工业等领域的重要应用而受到广泛关注。由于6Li和7Li的物理和化学性质十分相似,因而锂同位素分离具有相当大的挑战性。应用于工业分离的锂汞齐体系由于产生严重的环境问题,寻找新的锂同位素分离体系具有重要意义。本文进行萃取分离锂同位素新体系的探究,具体研究

萃取精馏法分离乙醇水体系的实验研究及流程模拟

乙醇是一种重要的有机溶剂,可以用作清洁液体燃料,还可以用作重要的化工生产原材料,但是乙醇极易与水形成共沸物,采用传统的分离技术,不能得到高纯度的乙醇产品。萃取精馏技术很好的解决了这个问题,他综合了溶剂萃取(分离效率高)和精馏(操作简单、处理能力大)的双重优点。 对萃取精馏过程来说,萃取剂的选择很重要

双水相萃取中,系线是随机划出的吗

一些高分子水溶液(如分子量从几千到几万的聚乙二醇硫酸盐水溶液)可以分为两个水相抄,蛋白质在两个水相中的溶解度有很大的差别.故可以利用双水相萃取过程分离蛋白质等溶于水的生物产品.双水相的优势ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取袭、纯化表现出以下优势:(1)含水量高(70

蛋白质纯化(protein-purification)实用技术3

10.非极性基团之间作用力溶质分子中的非极性基团与非极性固定相间的相互作用力(非选择性分散力或伦敦力)大小与溶质分子极性基团与流动力相中极性分子在相反方向上相互作用力的差异进行分离。因其流动相中的置换剂是极性小于水的有机溶剂(如甲醇、乙腈、四氢呋喃等),这些有机溶剂可能使许多蛋白质分子产生不可逆的变

丙酮和乙醇双水相萃取荧光法测定痕量维生素B2

萃取是一种十分重要的化学分离手段。传统的萃取分离通常是在两个互不相溶的相——有机相和水相间进行,这种异相萃取的效率通常较低,事实上,某些能与水互溶的有机溶剂在无机盐作用下也可能形成双水相体系,只是有关这方面的研究还比较少,有待进一步扩大和深入。与高聚物双水相体系相比,水溶性有机溶剂-盐双水相体系具有

现代生物分离技术在多肽蛋白质分离纯化中的应用

摘要:蛋白质是生物体的重要组成部分,在现代生物制药领域有着重要的作用,本文介绍了现代生物分离技术反胶束萃取、双水相萃取和电泳在多肽蛋白质分离中的应用和现状。关键词:蛋白质  反胶束萃取  双水相萃取  电泳一、前言随着基因工程和细胞工程的发展,尽管传统的分离方法(如溶剂萃取技术)已在抗生素等物质的生

生产水企业检测小分子团水,小分子团水检测有这些方面

生产水企业检测小分子团水,小分子团水检测哪里可以做,需做哪些项目。这篇文章就为大家答疑关于小分子团水检测相关知识内容。小分子团水检测小分子团水较普通水更为珍稀,小分子团水检测企业生产水方可能会有类似需求,或是开发矿泉水检测小分子团水等等。小分子团水检测需委托第三方检测机构,小分子团水检测小分子团项目

萃取分离提取发酵液中1,3丙二醇

1,3-丙二醇是一种重要的有机合成原料中间体,主要运用于合成高性能聚合物的单体。由于生物发酵法生产1,3-丙二醇具有原料再生、反应条件温和等特点,因此将甘油转化成1,3-丙二醇技术已经引起了很大的关注。1,3-丙二醇沸点高、强亲水性,因此从组成成分复杂、1,3-丙二醇浓度低的发酵液中分离提取1,3-

离子液体液相体系萃取金钯铂的研究

本论文系统地研究了长烷基侧链咪唑基离子液体引发溴甲酚绿(BCG)的弱色效应,该弱色效应是由于两者之间通过静电作用及疏水作用,形成了中性化合物[Cnmim]+2[BCG]2-而引起的。进一步分析了该体系的特征光谱,并以此为依据设计了一种新的长链咪唑离子液体的定量分析方法。该方法是通过UV-vis分光光

液液萃取法分离醋酸丁酯—丁醇—水的研究

概括了醋酸丁酯的性质、用途,综述了醋酸丁酯的生产方法,对醋酸丁酯、丁醇和水的分离方法进行了总结和比较,提出采用液液萃取法分离醋酸丁酯-丁醇-水体系。 在选择萃取剂方面,总结了萃取剂的类型,进行了系统的研究和对比,从物理萃取的角度,基于分子间的作用力,分析了十二大类溶剂对于醋酸丁酯-丁醇-水体系分离的