双水相体系用于生物分子的分离

双水相体系是一种高效的萃取体系,由于离子液体的可设计性,基于离子液体的双水相体系应用更加广泛。理想的双水相体系应具有优异相分离行为、较低粘度和高效萃取效率等特性,完全的两相分离是实现高选择性萃取的前提。然而在无机盐存在下,离子液体会出现盐析现象。浙江大学邢华斌教授课题组通过可逆加成-断裂链转移聚合法(RAFT)合成了一系列分子量及分子结构可控的聚离子液体(PILs),具有良好的疏水/亲水平衡性能,基于此获得的双水相体系实现了生物活性物质的高效萃取分离,该研究成果发表于ChemSusChem (2020, 13: 1906-1914)。图1. (a) 链转移剂 (b) 聚离子液体合成路线(图片来源: ChemSusChem, 2020, 13: 1906-1914) 该聚离子液体(PILs)以疏水烷基链为骨架结构,亲水咪唑离子液体单体为侧链,通过改变离子液体单体与链转移剂的比例,可以获得不同分子量的聚离子液体,而且分子量分布......阅读全文

双水相体系用于生物分子的分离

  双水相体系是一种高效的萃取体系,由于离子液体的可设计性,基于离子液体的双水相体系应用更加广泛。理想的双水相体系应具有优异相分离行为、较低粘度和高效萃取效率等特性,完全的两相分离是实现高选择性萃取的前提。然而在无机盐存在下,离子液体会出现盐析现象。浙江大学邢华斌教授课题组通过可逆加成-断裂链转移聚

高速逆流色谱双水相体系分离蛋白质

摘要:利用多分离柱高速逆流色谱仪,研究了聚乙二醇1000(PEG1000)-磷酸盐双水相体系的固定相保留率及该体系对蛋白质混合物和鸡蛋清样品的分离,以14.0%PEG1000-16.0%磷酸盐体系的上相为固定相,在流速0.16mL/min和转速900r/min的条件下,固定相的保留率达到33.3%"

小分子醇/盐二元双水相体系分离/萃取抗生素的研究

抗生素由于其稳定的药效被越来越多的使用到医疗事业、禽畜饲养当中,达到了快速高效治愈人类和动物的多种疾病,有效控制疫情传播的效果。但是不加控制使用抗生素也会给自然环境跟人类健康带来无法预计的反作用,严重威胁着人类生存。因此建立一种高效分离、绿色节能抗生素检测手段尤为迫切。 小分子有机溶剂双水相萃取体系

小分子醇/盐二元双水相体系分离/萃取四环抗生素的研究

抗生素由于其稳定的药效被越来越多的使用到医疗事业、禽畜饲养当中,达到了快速高效治愈人类和动物的多种疾病,有效控制疫情传播的效果。但是不加控制使用抗生素也会给自然环境跟人类健康带来无法预计的反作用,严重威胁着人类生存。因此建立一种高效分离、绿色节能抗生素检测手段尤为迫切。 小分子有机溶剂双水相萃取体系

非传统层析的生物分离方法双水相系统的简介

  ATPS是一种基于两种不混相、富水相形成的液-液分离模式,这两种富水相是在两种互不相容的溶质超过一定临界浓度时形成的。目前研究最多的是聚合物-盐、聚合物-聚合物,以及醇-盐、离子-液体为基础的体系,还有响应式聚合物体系。目前对这一分离方法的研究已经超过近30年。例如,使用ATPS从CHO和杂交瘤

双水相萃取体系在分离纯化芦荟活性成分中的应用研究

论文研究了PEG/盐、浊点萃取、醇/盐和离子液体/盐四种双水相体系,并成功将其应用到萃取、分离和纯化芦荟中的蒽醌、多糖类物质。 首先,采用星点设计-响应面法分别优化了芦荟中的蒽醌和多糖类物质提取工艺。分别考察了乙醇浓度、提取温度和液固比对蒽醌得率的影响;提取温度、提取时间和液固比对多糖得率的影响。采

离子液体双水相萃取分离生物活性物质及其机理的研究

双水相萃取技术是提取和纯化生物活性物质的一种新型分离方法,其操作条件温和、易于放大、且可连续操作。离子液体双水相是基于高聚物双水相发展而来的一种高效温和萃取分离体系。与传统的双水相萃取技术不同,离子液体双水相技术采用亲水性的离子液体(ILs)与无机盐的水溶液进行混合,在水中以较高的浓度溶解后形成互不

双水相萃取

一些高分子水溶液(如分子量从几千到几万的聚乙二醇硫酸盐水溶液)可以分为两个水相,蛋白质在抄两个水相中的溶解度有很大的差别。故可以利用双水相萃取过程分离蛋白质等溶于水的生物产品。双水相的优势  ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等袭的提取、纯化表现出以下优势:  (1)含水量

双水相萃取分离技术的特点及影响因素

1、双水相萃取分离技术的特点:(1)作用条件温和。(2)产品活性损失小。(3)无有机溶剂残留。(4)各种参数可以按照比例放大而不降低产物收率。(5)处理量大。(6)分离步骤少,操作简单,可持续操作。(7)设备投资少。2、双水相萃取分离技术的影响因素:(1)聚合物的影响。(2)双水相系统物理化学性质的

双水相萃取分离技术的特点及影响因素

1、双水相萃取分离技术的特点:(1)作用条件温和。(2)产品活性损失小。(3)无有机溶剂残留。(4)各种参数可以按照比例放大而不降低产物收率。(5)处理量大。(6)分离步骤少,操作简单,可持续操作。(7)设备投资少。2、双水相萃取分离技术的影响因素:(1)聚合物的影响。(2)双水相系统物理化学性质的

双水相萃取的原理

某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous tw

水相法分离染色质

水相法分离染色质试剂、试剂盒:水相裂解缓冲液仪器、耗材:离心机实验步骤:像聚胺法的第 1、2 步中讲的那样诱导悬浮或单层培养细胞的中期阻遏状态。2. 细胞在 4℃,1000 g 离心 10 分钟然后重悬浮,典型的制备量为 10 ml 新鲜培养基含 108 个细胞。3. 将浓的细胞悬液在冰上放置至少

双水相萃取技术分离提取谷氨酸脱羧酶的研究

一种既环保又易于操作的生物提取分离技术——双水相萃取技术(ATPS)从超声破壁处理后的大肠杆菌(E.coli)细胞浆中分离提取谷氨酸脱羧酶(GAD)。主要研究内容如下: 首先,建立新型双水相体系,分别考察了分子量2000的聚乙二醇(PEG2000)、六种亲水有机溶剂(CH_3OH、C_2H_5OH、

双水相萃取分离免疫球蛋白和单克隆抗体研究

抗体广泛用于疾病治疗、医疗诊断和免疫分离,具有广阔的市场需求和发展前景。抗体主要从动物血液、腹水和细胞培养液中分离得到,尤其是动物细胞培养制备单克隆抗体,已实现规模化生产。然而,目前抗体分离过程的成本仍旧较高,成为抗体产业发展的一个瓶颈,开发经济高效的抗体分离新方法,具有重要意义。双水相萃取具有生物

双水相萃取技术的简介

早在1896年,Beijerinck发现,当明胶与琼脂或明胶与可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随之分为两相,上相富含明胶,下相富含琼脂(或淀粉),这种现象被称为聚合物的不相溶性(incompatibility),从而产生了双水相体系(Aqueous two phase system,

双水相萃取技术的应用

双水相萃取技术已广泛应用于生物化学、细胞生物学、生物化工和食品化工等领域,并取得了百许多成功的范例,主要是分离度蛋白质 ,酶,病毒,脊髓病毒和线病毒的纯化,核酸,DNA的分离,干扰素,细胞组织,抗生素,多糖,色素,抗体等知。此外双水相还可用于稀有金属/贵金属分离,传统的稀有金属/贵金属溶剂萃取方法存

生物分子的透析分离法

一、生物分子透析分离的原理:天然或人工半透膜只允许小分子通过而阻碍大分子通过,当膜的两侧存在小分子浓度差时,小分子从高浓度一侧向低浓度一侧扩散直到平衡。通过离心机分离不断去除扩散出来的小分子,从而达到分离纯化的目的。二、影响生物分子透析分离的因素:1、半透膜的通透性:半透膜的通透性取决于膜孔径的大小

生物分子的透析分离法

一、生物分子透析分离的原理:天然或人工半透膜只允许小分子通过而阻碍大分子通过,当膜的两侧存在小分子浓度差时,小分子从高浓度一侧向低浓度一侧扩散直到平衡。通过离心机分离不断去除扩散出来的小分子,从而达到分离纯化的目的。二、影响生物分子透析分离的因素:1、半透膜的通透性:半透膜的通透性取决于膜孔径的大小

染色体分离实验—水相法分离染色质

实验材料细胞试剂、试剂盒水相裂解缓冲液仪器、耗材离心机实验步骤1. 像聚胺法的第 1、2 步中讲的那样诱导悬浮或单层培养细胞的中期阻遏状态。2. 细胞在 4℃,1000 g 离心 10 分钟然后重悬浮,典型的制备量为 10 ml 新鲜培养基含 108 个细胞。3. 将浓的细胞悬液在冰上放置至少 30

双水相萃取水蛭多肽的方案

双水相萃取 3.1 双水相萃取的原理及特点 3.1.1 双水相萃取的原理 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度

生物大分子的分离纯化技术概述

生物大分子是指蛋白质(包括酶)、多聚糖和核酸类化合物,分子量从几千到几百万,广泛存在于各种生物体内,与各种生命活动息息相关。生物大分子具有十分重要的生理功能和应用价值,研究生物大分子的结构、功能和应用已成为生命科学的一个关键问题。不论是从动植物和微生物体内提取的生物大分子产品,还是用生物工程制备的生

生物大分子的分离纯化技术概述

      生物大分子是指蛋白质(包括酶)、多聚糖和核酸类化合物,分子量从几千到几百万,广泛存在于各种生物体内,与各种生命活动息息相关。生物大分子具有十分重要的生理功能和应用价值,研究生物大分子的结构、功能和应用已成为生命科学的一个关键问题。不论是从动植物和微生物体内提取的生物大分子产品,还是用生物

水/氧循环的生物光电化学体系获进展

  太阳能作为自然界中存在最广泛的可再生能源(23,000 TW/年),如何实现其高效合理地开发利用一直是科研工作者们的研究热点。从目前发展阶段来看,对太阳能的利用主要集中在太阳能电力系统、太阳能热力系统以及太阳能燃料系统三个方面。然而,地球自转引起的区域性光源间歇问题却极大地限制了太阳能向其他能

油气水三相分离器的简介

  油气水三相分离器在油井产物进行气液分离的同时,还能将原油中的部分水分离出来。随着油田的开发,油井产出液的含水量逐渐增多,三相分离器的应用也逐渐增多。结构不同,三相分离器的控制方法也不同。两种典型分离器的控制原理如下:  (1)油气水混合物进入分离器后,进口分流器把混合物大致分成汽液两相,液相进入

木瓜蛋白酶的双水相萃取研究

木瓜蛋白酶由于其水解蛋白的能力较强,且具有较宽的pH和温度适应性,所以在食品、药品、日化等行业有较广泛的应用。因此对木瓜蛋白酶的分离纯化技术进行深入研究,提取高品质的木瓜蛋白酶具有重要的应用价值。而传统提取木瓜蛋白酶的方法都存在一些问题,所以有必要寻找制备高品质、高活性木瓜蛋白酶的新方法。双水相萃取

在双水相萃取系统中,如何确定加入系统的PEG用量

双水相萃取对于传统有机相-水相的溶剂萃取来说是个全新的替代品。当两种聚合物、一种聚合物与一种亲液盐或是两种盐(一种是离散盐且另一种是亲液盐)在适当的浓度或是在一个特定的温度下相混合在一起时就形成了双水相系统。萃取原理当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水

用于油-水-固三相体系的接触角测试

本视频演示了石英玻璃在硅油-水滴体系中的接触角值。我们把硅油装到一个石英玻璃制成的方形容器内,石英玻璃片放在容器内,水滴滴在玻璃上方形成了一个比较大的接触角值。由于图像背景有噪声(杂点),我们采用CAST3的图像预处理功能将图像背景进行了自动处理。在计算方法上,由于此时接触角形状不符合圆或θ/2法前

生物分子的等电点沉淀分离法

等电点沉淀分离法是利用两性电解质在等电点时溶解度最小的性质,不同的两性电解质其等电点不同,其在电中性时溶解度不同,可用于某些两性电解质的分离,如氨基酸、蛋白质和核苷酸等生物分子。为了增加沉淀效果,往往在等电点时再加上其它沉淀因素。等电点沉淀分离法一般不单独使用,常与盐析分离法、有机溶剂沉淀分离法一起

生物分子的有机溶剂沉淀分离法

一、生物分子有机溶剂沉淀分离的原理:有机溶剂对许多溶于水的生物小分子以及核酸、多糖、蛋白质等生物大分子都能发生沉淀作用。有机溶剂主要是降低溶液的介电常数,从而增强分子之间的相互作用使其溶解度降低而析出。对具有表面水层的生物大分子,有机溶剂可破坏溶质分子表面的水膜,使这些大分子脱水而相互聚集析出。不同

生物大分子的离心分离实验(三)

例(6)用Cs2SO4 及尿素作梯度材料分离生物大分子样品:初步离心后的蛋白-核酸混合液梯度液:3.00g Cs2SO4 2.5ml 8M 尿素(经过混合床去离子处理的)50μl 1.0M Tris-HCl(PH7.4)25μl 0.2M EDTA(PH7.4)1.25ml 样品的水溶液以上各项充分