技术课堂之X荧光激发源的激发方式
针对通常的X射线荧光光谱仪,比较普及的激发方法有一下几种: 一、用放射性同位素源激发 源激发是将小量的放射性同位素,如55Fe(铁)、109Cd(镉)等化学物质固封在密封性的多出小圆孔的铅罐中,持续发射点出低能γ放射线,经准直后照射被测化学物质上造成X莹光。放射性同位素源传出的X射线抗压强度是十分平稳的,可是X射线强度小,分布不能调。 单色性好、信噪比高、变轻、变轻了。适合生产制造成手持式或简单式实验室仪器。但是输出功率低,侧量的敏感度较低。 二、用X射线管激发 X射线管激发是应用X射线管做为激发源激发出X射线,经准直后照射被测化学物质上激发X莹光。X射线管所造成的灯源——原级X射线谱抗压强度的效率性在于静电发生器出示给X射线管的髙压和管电流的效率性,因而应用X射线管能够根据调整管流和髙压从而可选择性地提升或降低对一些与众不同原素的激发高效率,提升思维逻辑。通常 选用高频变压器,其特性是变轻、噪......阅读全文
技术课堂之X荧光激发源的激发方式
针对通常的X射线荧光光谱仪,比较普及的激发方法有一下几种: 一、用放射性同位素源激发 源激发是将小量的放射性同位素,如55Fe(铁)、109Cd(镉)等化学物质固封在密封性的多出小圆孔的铅罐中,持续发射点出低能γ放射线,经准直后照射被测化学物质上造成X莹光。放射性同位素源传出的X射线
ICP激发源中用氩气的作用
等离子体光谱仪中必定要产生等离子体,氩气的作用是产生等离子体的电离气体。使用电感耦合的方法将电磁能量耦合给氩气,气体电离成为等离子体,等离子体本身可以释放各种光谱或者和物体相互作用发出物体的特征光谱,光谱仪来分析这些发射的光谱,得到的光谱分布可以用来进行各种分析。PS.ICP就是电感耦合等离子体的英
电子激发X荧光分析的介绍
电子激发X荧光分析的轫致辐射本底比PIXE高二个量级以上,因此分析灵敏度低得多。但是,用聚焦的电子束激发样品表面1微米的区域,使产生元素的特征X 射线,可以观察样品表面组成的局部变化。用这种方法能测定合金、矿物、陶瓷等样品中的夹杂物和析出物,决定合金元素的局部富集区等。
质子激发X射线荧光分析的非真空分析技术
质子X 射线荧光分析一般在真空中照射样品(称作真空分析或内束技术),但也发展了一种非真空分析技术(或称外束技术),即将质子束从真空室中引出,在空气(或氦气)中轰击样品。真空分析可能引起厚样品积累正电荷(质子电荷)而吸引周围电子,造成本底增高。非真空分析由于样品周围空气电离而有导电性,可消除电荷积
质子激发X射线荧光分析的X-射线谱
在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽
质子激发X射线荧光分析的简介
利用原子受质子激发后产生的特征 X射线的能量和强度来进行物质定性和定量分析的方法。简称质子 X射线荧光分析,英文缩写为PIXE。质子X 射线荧光分析是20 世纪70 年代发展起来的一种多元素微量分析技术,其分析灵敏度可达10-16 克,相对灵敏度可达10-6~10-7 克/克。原则上可分析原子序
电感耦合等离子体激发源
激发源即ICP光源,是发射光谱仪中一个极为重要的组成部分,它的作用是给分析试样提供蒸发、原子化或离子化激发的能量,使其发射出特征谱线。电感耦合等离子体装置由射频发生器和等离子体炬管组成。图8.4 ICP光谱仪结构图8.2.1.1 射频发生器射频发生器(也称高频发生器)是ICP的高频供电装置,为等离子
简述质子激发X射线荧光分析的原理
基本原理是用高速质子照射样品,质子与样品中的原子发生库仑散射。原子内层电子按一定几率被撞出内壳层,留下空穴,较外层电子向这个空穴跃迁时发射出特征X 射线。用探测仪器探测和记录这些特征X 射线谱,根据特征X 射线的能量可定性地判断样品中所含元素的种类,根据谱线的强度可计算出所测元素的含量。
质子激发X射线荧光分析的实验装置
质子X 射线荧光分析的主要实验装置包括: ①加速器,一般用质子静电加速器,选用能量为1~3 兆电子伏的质子,在此能量范围内,质子激发X射线的产额高,灵敏度高;质子的能量再高时,将会引起许多核反应,使本底增大;能量再低时,质子的穿透能力下降,只能用于表面分析。②靶室(或称散射室),是分析样品放置
电磁辐射激发X荧光分析的简介
简称EDXRF。电磁辐射激发一般用X射线管或Fe、Pu、Cd、、Co等放射性同位素作激发源。这时它的探测极限虽不及PIXE,但制样简便,常常可以直接分析原始样品,而且既能分析低含量样品,又能分析高含量样品,因此应用更为广泛。X射线在物质中的穿透能力较大,故能测量较厚样品中的元素平均含量。当使用放
激发X射线荧光分析法的概念
当α 、β、γ或X射线作用于样品时,由于库仑散射,轨道电子吸收其部分动能,使原子处于激发状态。由激发态返回基态时发射特征X射线,根据此特征X射线的能量和强度来分析元素的种类和含量。其灵敏度很高,用途很广。
带电粒子激发X荧光分析的概述
简称PIXE,它应用的带电粒子可以是质子、α粒子或重离子,目前使用最多的是质子。它是用加速器(常用静电加速器产生的几兆电子伏能量的质子束轰击样品,质子使样品中各元素原子的内层电子电离,接着较外层的电子向内层跃迁,同时发射X射线。由于各种元素发射具有特定波长(或能量)的标识X射线,可利用锂漂移硅探
拉曼光谱仪激发源的知识介绍
一个典型的拉曼光谱仪包括三个主要部分:激发源,采样系统和检测系统。经过多年的发展,这三个部分有着多种多样的实现形式。例如当前典型的激发源采用激光器,检测器采用光谱仪,而采样系统多采样显微光路或光纤探头实现。 拉曼光谱主要测量分子的频移,因此一个单色性非常好的激发光源尤为重要。激光器是当前一
ICP激发源中用氩气的作用是什么
等离子体光谱仪中必定要产生等离子体,氩气的作用是产生等离子体的电离气体。使用电感耦合的方法将电磁能量耦合给氩气,气体电离成为等离子体,等离子体本身可以释放各种光谱或者和物体相互作用发出物体的特征光谱,光谱仪来分析这些发射的光谱,得到的光谱分布可以用来进行各种分析。PS.ICP就是电感耦合等离子体的英
X射线管激发X荧光光谱连续本底扣除方法研究
X射线管是目前X射线荧光光谱分析中最常采用的激发源,它所产生的原级谱成为了X荧光光谱中本底成分的主要来源,在对这种光谱进行进一步的分析处理之前需要对其本底进行扣除,对本底估计的准确性直接影响后续处理步骤的效果。对射线管激发X荧光光谱的成分进行了分析,针对其本底特点构造了一种本底强度的估计方法,并根据
X荧光制样之液体样品制备
上一章节讲解完固体样品制备大家应该都会有所了解了,下面给大家讲一下液体样品的制备要求。 液体样品可直接放在液体样品杯中进行直接测定,所用液体体积尽可能达到无限厚,体积应保持恒定。样品杯由不锈钢、聚四氟乙烯等材料制成,并用厚度为几个微米的聚酯、聚乙烯、聚丙烯等薄膜作为支撑保护。 液体样
荧光显微镜的原理部件及激发方式
荧光显微镜与普通光学显微镜不同,它不是通过普通光源的照明观察标本,在荧光显微镜上,必须在标本的照明光中,选择出特定波长的激发光,以产生荧光,然后必须在激发光和荧光混合的光线中,单把荧光分离出来以供观察。因此,在选择特定波长中,滤光镜系统,成为极其重要的角色。我们之所以能观察标本,不是由于光源的照明,
荧光显微镜的原理部件及其激发方式
荧光显微镜与普通光学显微镜不同,它不是通过普通光源的照明观察标本,而是利用一定波长的光(通常是紫外光、蓝紫光)激发显微镜下标本内的荧光物质,使之发射荧光,所以,荧光显微镜的光源所起的作用不是直接照明,而是作为一种激发标本的内荧光物质的能源。我们之所以能观察标本,是由于光源的照明,而是标本内荧光物
荧光显微镜的原理部件及其激发方式
荧光显微镜与普通光学显微镜不同,它不是通过普通光源的照明观察标本,而是利用一定波长的光(通常是紫外光、蓝紫光)激发显微镜下标本内的荧光物质,使之发 射荧光,所以,荧光显微镜的光源所起的作用不是直接照明,而是作为一种激发标本的内荧光物质的能源。我们之所以能观察标本,是由于光源的照明,而是标本内
X射线荧光光谱仪的吸收与激发效应
对一给定元素的某一吸收限的短波侧,质量衰减系数pm迅速地随着波长λ的增加而变大,根据式μm=Kλm及勒鲁的研究结果,对于若干主要谱系,在0.18-10A的波段,λ的幂值m变化在2.1~2.8之间。因此越是接近吸收限短波侧的谱线,所受的吸收或衰减就越大。而且,对一谱系,由于km随的变化是连续的,故
什么叫连续x射线
连续X射线是高速电子受到阳极靶原子核的库仑场的阻力减速,动能转化为X射线的能量时产生的。又称轫致辐射。相对地,还有一种标识X射线。标识X射线是高速电子将靶原子的内层轨道电子碰撞出轨道后,外层电子向内层跃迁时发出的。因为跃迁释放的能量具有原子的特征,因此又称特征X射线。标识X射线和连续X射线的激发源都
什么叫连续x射线
连续X射线是高速电子受到阳极靶原子核的库仑场的阻力减速,动能转化为X射线的能量时产生的。又称轫致辐射。相对地,还有一种标识X射线。标识X射线是高速电子将靶原子的内层轨道电子碰撞出轨道后,外层电子向内层跃迁时发出的。因为跃迁释放的能量具有原子的特征,因此又称特征X射线。标识X射线和连续X射线的激发源都
X射线荧光光谱仪的吸收与激发(增强)效应
① 原级入射线进人样品时所受的吸收效应; ② 荧光谱线出射时受样品的吸收或分析元素受样品中其它元素的激发效应; ③ 第三级的激发效应。 以上各级吸收和激发效应,都随着样品基体化学组成的差异而发生变化。
X射线荧光分析技术的应用
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;
X射线荧光分析的技术简介
X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。 X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的
X射线荧光分析技术的应用
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其他分析方法
X射线荧光分析技术的应用
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其
【锐赛小课堂】荧光原位杂交技术实验心得
锐赛小课堂1221-157 荧光原位杂交技术( fluorescence in situ Hybridization,FISH)是一种非放射性原位杂交方法,用特殊的荧光素标记核酸探针,在细胞或组织切片标本上进行杂交,以检测细胞内 DNA 或 RNA 特定序列存在与否。 FISH 实验
X射线荧光分析技术分类
X射线荧光分析技术可以分为两大类型:波长色散X射线荧光分析(WDXRF)和能量色散X射线荧光分析(EDXRF);而能量色散型又根据探测器的类型分为(Si-PIN)型和SDD型。在不同的应用条件下,这几种类型的技术各有其突出的特点。目前,X射线荧光分析不仅材料科学、生命科学、环境科学等普遍采用的一
X射线荧光分析技术介绍
X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。 在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其