抗体的纯化:盐析法
精制抗体的方法很多。一般采用综合技术,避免蛋白变性。如分离IgG时,多结合使用盐析法与离子交换法,以求纯化。提取IgM的方法也很多,如应用凝胶过滤与制备电泳法,或离子交换与凝胶过滤等。 一、原理 蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。当用中性盐加入蛋白质溶液,中性盐对水分子的亲和力大于蛋白质,于是蛋白质分子周围的水化膜层减弱乃至消失。同时,中性盐加入蛋白质溶液后,由于离子强度发生改变,蛋白质表面电荷大量被中和,更加导致蛋白溶解度降低,使蛋白质分子之间聚集而沉淀。 1、试剂 (1)正常人混合血清;灭菌生理盐水。 (2)饱和硫酸铵溶液的配制 称(NH4)2SO4(AR)400~425克,以50~80℃之蒸馏水500ml溶解,搅拌20分钟,趁热过滤。冷却后以浓氨水(15N NH4OH)调PH至7.4。配制好的饱......阅读全文
抗体的纯化:盐析法
精制抗体的方法很多。一般采用综合技术,避免蛋白变性。如分离IgG时,多结合使用盐析法与离子交换法,以求纯化。提取IgM的方法也很多,如应用凝胶过滤与制备电泳法,或离子交换与凝胶过滤等。一、原理蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。当用
抗体的纯化:盐析法
精制抗体的方法很多。一般采用综合技术,避免蛋白变性。如分离IgG时,多结合使用盐析法与离子交换法,以求纯化。提取IgM的方法也很多,如应用凝胶过滤与制备电泳法,或离子交换与凝胶过滤等。 一、原理 蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。
免疫球蛋白纯化技术——盐析法纯化免疫球蛋白
在大多数情况下,免疫血清、杂交瘤细胞培养上清以及腹水中的抗体需经纯化后再用于各种免疫学检测中去。免疫球蛋白常用的纯化方法有盐析法、凝胶过滤、离子交换层析、亲和层析以及高效液相色谱等方法。(来源:医学基础免疫学实验指导,主编金伯泉李恩善,第1 版,北京:世界图书出版社,1990)实验方法原理蛋白质在水
盐析法(salting-out-method)纯化免疫球蛋白
(一) 原理 蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。当用中性盐加入蛋白质溶液,中性盐对水分子的亲和力大于蛋白质,于是蛋白质分子周围的水化膜层减弱乃至消失。同时,中性盐加入蛋白质溶液后,由于离子强度发生改变,蛋白质表面电荷大量
冷酒精沉淀法抗体纯化
1、 血清加3倍体积的蒸馏水,调节 pH至7.7(±)冷却到0℃。在激烈搅拌的条件下,加预冷的酒精(-20℃)到最终浓度为20%,保持在-5℃。产生的沉淀(a),含有大多数种类的免疫球蛋白。 2、 沉淀a悬浮于25倍体积的0.15~20mol/l NaCl溶液(冷)中,加有0.05mol/l醋酸调节
抗体纯化:冷酒精沉淀法
1、 血清加3倍体积的蒸馏水,调节 pH至7.7(±)冷却到0℃。在激烈搅拌的条件下,加预冷的酒精(-20℃)到最终浓度为20%,保持在-5℃。产生的沉淀(a),含有大多数种类的免疫球蛋白。2、 沉淀a悬浮于25倍体积的0.15~20mol/l NaCl溶液(冷)中,加有0.05mol/l醋酸调节
抗体的亲和层析法纯化技术
实验概要本实验介绍了抗体亲和层析法纯化的操作流程。实验原理亲和层析的高度选择性使得从某一初始材料中纯化,富集某一含量较低的目的蛋白成为可能,因此亲和层析是蛋白质分离纯化过程中最有效的方法之一。另外,如果配基与蛋白质的亲和能力很强,也可同时进行样品的浓缩。虽然多数情况下不需要将抗体与其他血清蛋白分开,
抗体的亲和层析法纯化技术
实验概要本实验介绍了抗体亲和层析法纯化的操作流程。实验原理亲和层析的高度选择性使得从某一初始材料中纯化,富集某一含量较低的目的蛋白成为可能,因此亲和层析是蛋白质分离纯化过程中最有效的方法之一。另外,如果配基与蛋白质的亲和能力很强,也可同时进行样品的浓缩。虽然多数情况下不需要将抗体与其他血清蛋白分开,
抗体纯化
Antibody PurificatioinPurification of IgG Using Protein A- or Protein G-Agarose (KPL) Purifying Antibodies (Perkin-Elmer)Precipitation MethodsProtein
盐析纸色谱法
盐析纸色谱法 salting-out paper chromatography 是用于蛋白质类分离的一种纸色谱法。在水流动相中加入盐类或有机溶剂如乙醇、丙酮等,使组分的溶解度减小,被纸吸附的作用加强,从而使各蛋白质组分的移动距离有较大差别,从而达到较好的分离。
亲和层析法(affinity-chromatography)纯化多克隆抗体
【实验原理】如图所示,亲和层析的高度选择性使得从某一初始材料中纯化,富集某一含量较低的目的蛋白成为可能,因此亲和层析是蛋白质分离纯化过程中最有效的方法之一。另外,如果配基与蛋白质的亲和能力很强,也可同时进行样品的浓缩。 虽然多数情况下不需要将抗体与其他血清蛋白分开,但如果一旦需要,蛋白A亲和层析
抗体纯化:deaesephadex-a50-柱层析法
一、原理deae-sephadex a-50(二乙氨基—乙基-葡萄糖凝胶a-50)为弱碱性阳离子交换剂。用NaOH将Cl-型转变为OH-型后,可吸附酸性蛋白。血清中的γ球蛋白属于中性蛋白(等电点为pH6.85~7.5),其余均属酸性蛋白。pH7.2~7
抗体纯化:deaesephadex-a50-柱层析法
一、原理 deae-sephadex a-50(二乙氨基—乙基-葡萄糖凝胶a-50)为弱碱性阳离子交换剂。用NaOH将Cl-型转变为OH-型后,可吸附酸性蛋白。血清中的γ球蛋白属于中性蛋白(等电点为pH6.85~7.5),其余均属酸性蛋白。pH7.2~7.4的环境中,酸性蛋白均被deae-
生物样品分离技术盐析法
盐析法利用不同蛋白质在高浓度的盐溶液中溶解度不同程度的降低来沉淀除去蛋白质。在低盐浓度下,蛋白质溶解度随着盐浓度的升高而增加,称为盐溶作用。当盐浓度不断升高时,不同蛋白质的溶解度又以不同程度下降,并先后析出沉淀,称为盐析作用。这是由蛋白质分子内及分子间电荷的极性基团的静电引力造成的。由于水中加入了少
盐析法的原理是什么
盐析法的原理是将硫酸铵、硫化钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。蛋白质在水溶液中的溶解度取决于蛋白质分子表面离子周围的水分子数目,亦即主要是由蛋白质分子外周亲水基团与水形成水化膜的程度以及蛋白质分子带有电荷的情况决定的。蛋白
盐析萃取偶联柱层析分离纯化血浆蛋白
血浆蛋白由数百种具有广泛生理功能的蛋白质组成,其中白蛋白与免疫球蛋白占据着血液制品中主要的市场份额。血浆成分十分复杂,目前工业上血浆蛋白的分离方法主要采用有机溶剂沉淀法、盐析法和柱层析,但这些方法尚存在着分离环境要求低温、分离纯化步骤繁琐、纯度和收率低等缺点。本论文开展了亲水性有机溶剂盐析萃取偶合柱
抗体的纯化实验
实验方法原理利用细菌胞壁蛋白的特性可以提供了一个快速、简捷、特异、高效的抗体纯化方法。这里细菌胞壁蛋白主要指蛋白 A 和蛋白 G,它们分别从金黄色化脓性葡萄球菌和 G 组链球菌分离纯化。它们能特异结合到免疫球蛋白的 Fe 部分。由于它们对不同的免疫球蛋白有不同的亲和力,所以应根据免疫球蛋白的种类和类
抗体的纯化实验
抗体的纯化 实验方法原理 利用细菌胞壁蛋白的特性可以提供了一个快速、简捷、特异、高效的抗体纯化方法。这里细菌胞壁蛋白主要指蛋白 A 和蛋白 G,它们分别从
IgG抗体纯化实验
实验材料 抗体试剂、试剂盒 SAS仪器、耗材 透析膜离心机实验步骤 1. 于4℃不断搅拌下,往2体积的含有IgG的混合物中,逐滴加入1体枳pH7.0的SAS溶液。加完后置于4℃不间断地搅拌此混合物2~4 h以形成沉淀。2 000 g 离心20 min。 2. 用预冷的33% SAS溶液在漩涡混合
IgG抗体纯化实验
虽然亲和层析法是进行特异性抗体纯化的首选,然而有时这种纯化方式却非必需,或者无法实施进行。在大多数锖况下,运铁蛋白可发生共沉淀或共纯化,能用凝胶滤过层析去除之。实验材料抗体试剂、试剂盒SAS仪器、耗材透析膜离心机实验步骤1. 于4℃不断搅拌下,往2体积的含有IgG的混合物中,逐滴加入1体枳pH7.
抗体的纯化实验
实验方法原理 利用细菌胞壁蛋白的特性可以提供了一个快速、简捷、特异、高效的抗体纯化方法。这里细菌胞壁蛋白主要指蛋白 A 和蛋白 G,它们分别从金黄色化脓性葡萄球菌和 G 组链球菌分离纯化。它们能特异结合到免疫球蛋白的 Fe 部分。由于它们对不同的免疫球蛋白有不同的亲和力,所以应根据免疫球蛋白
抗体纯化方法介绍
抗体制备制备出效价高,特异性强,稳定性好的抗体是免疫学实验取得成功的基础,抗体质量的好坏直接影响着研究者研究的成败,不同的免疫学实验方法(如ELISA,IHC,IP,ICC,SDS-PAGE, WB等)对抗体的效价,浓度和纯度有不同的要求。我们知道,一般免疫血清中含有特异性抗体和非特异性抗体
盐析法提取果胶的方法介绍
多价金属盐沉淀法,目前在生产上广泛采用。具体方法是:在果胶液中加入一定量的MgCl2、CuCl2或AlCl3然后用氨等调节pH,使之形成碱式金属盐,此碱式金属盐与果胶形成络合物沉淀出来,然后再经过脱盐漂洗和干燥得到果胶成品。具体流程是:橘皮残渣-复水-灭酶-漂洗-沥干-加酸萃取-过滤-加盐沉析-抽滤
关于果胶的盐析法的介绍
多价金属盐沉淀法,目前在生产上广泛采用。具体方法是:在果胶液中加入一定量的MgCl2、CuCl2或AlCl3然后用氨等调节pH,使之形成碱式金属盐,此碱式金属盐与果胶形成络合物沉淀出来,然后再经过脱盐漂洗和干燥得到果胶成品。具体流程是:橘皮残渣-复水-灭酶-漂洗-沥干-加酸萃取-过滤-加盐沉析-
蛋白质盐析法的原理
蛋白质颗粒表面带有很多极性基团,如-NH+、-COO-、-CONH2、-OH、-SH等,和水有高度亲和性,当蛋白质与水相遇时,蛋白质吸水,在蛋白质颗粒外面形成一层密度较厚的水膜(水化层)。水膜的存在使蛋白质颗粒之间不会碰撞,因此蛋白质在水溶液中比较稳定而不易沉淀,是一种比较稳定的亲水胶体。蛋白质能形
血清IgG的分离制备—盐析法
原理IgG是免疫球蛋白(Immunoglobulin,简称IgG)的主要成分之一,分子量约为15万~16万,沉降生活费数约为7s。IgG是动物和人体血浆的重要成分之一。血浆蛋白质的成分多达70余种,要从血浆中分离出IgG,首先要进行尽可能除去其他蛋白质成分的粗分离程序,使IgG在样品中比例大为增高,
蛋白质沉淀方法盐析法
在蛋白质溶液中加入大量的中性盐以破坏蛋白质的胶体稳定性而使其析出,这种方法称为盐析。常用的中性盐有硫酸铵、硫酸钠、氯化钠等。各种蛋白质盐析时所需的盐浓度及pH不同,故可用于对混和蛋白质组分的分离。例如用半饱和的硫酸铵来沉淀出血清中的球蛋白,饱和硫酸铵可以使血清中的白蛋白、球蛋白都沉淀出来,盐析沉
亲和层析--抗体纯化
蛋白 A(Protein A)琼脂糖微球蛋白 A(Protein A)是金黄色葡萄球菌的细胞壁成分。它由一条多肽链组成,其中包含五个抗体结合结构域。这些高亲和力结合域和免疫球蛋白 G(IgG)的 Fc 区域特异性结合。其他类型如 IgA 和 IgM 可能可以通过和 抗体 Fab 片段相互作用与蛋白
IgG抗体纯化实验2
实验材料抗体试剂、试剂盒SAS仪器、耗材透析膜离心机实验步骤1. 准备好一根DEAE-Affi-Gel Blue柱子。用5倍柱床体积的加样缓冲液平衡(7 ml 柱床体积/ml 抗血清或腹水)。此步骤及以下各步均在4℃下操作实施。2. 于4℃下透析样品40 h,中间换2次加样缓冲液(每次换大约4
多克隆抗体纯化实验
实验材料 动物血清样品试剂、试剂盒 正辛酸醋酸缓冲液PBS仪器、耗材 透析袋高速低温离心机实验步骤 一、材料和试剂 1. 正辛酸 2. 60 mmol/L,pH4.0醋酸缓冲液,PBS 3. 透析袋 4. 高速低温离心机 二、操作步骤 1. 将待提取样品用60 mmol/L,pH4.0醋