通过氯化氢化学气相沉积法对厚4HSiC薄膜同质外延生长...

通过氯化氢化学气相沉积法对厚4H-SiC薄膜同质外延生长的工艺优化 通过氯化氢化学气相沉积法对厚4H-SiC薄膜同质外延生长的工艺优化本篇文章中提出了一种通过氯化氢化学气相沉积(HCVD)在4°切割基板上快速同质外延生长厚的4H-SiC薄膜的工艺优化方法。所使用的气体是HCl与SiH4,C2H4和H2的混合物。得到的4H-SiC薄膜通过Nomarski,AFM,Raman和XRD等方法进行表征,并且对HCl添加剂中的Cl / Si比对外延膜质量和生长速率的影响进行了研究。在本文中采用优化的氯基方法HCVD,在自制的立式热壁HCVD系统中,4H-SiC外延生长速率高达52μm/ h。图1:(a)自制立式热壁HCVD设备(b)和(c)温度和基于4H-SiC氯化物的外延生长的气流的过程图图2:不同Cl / Si比生长的4H-SiC外延层的表面的Nomarski光学显微镜图像是(a)0,(b)1,(c)2,(d)5,(......阅读全文

SiC同质外延厚度分析

  钝化层分析 钝化层作为保护层、绝缘层或抗反射层,在半 导体材料中扮演着重要的角色。 VERTEX 系列 光谱仪是分析钝化层的理想工具,它可以实 现快速灵敏的无损分析。   磷硅玻璃(PSG)和硼磷硅玻璃(BPSG)中硼和 磷的定量分析 分析SiN等离子层和Si-O基钝化层 分析超低K层   

基于简单的支架的多片4HSiC化学气相沉积同质外延生长

虽然在商用化学气相沉积设备中可以在一次运行中实现多片4H-SiC衬底的同质外延生长,但是必须将晶片装载到可旋转的大型基座上,这导致基座的直径随着数量或者外延晶片总面积的增加而增加。在这项工作中,我们展示了一种简便的方法,通过自制的常规单晶片化学气相沉积设备,在没有大型基座的情况下,在简单的支架上放置

通过氯化氢化学气相沉积法对厚4HSiC薄膜同质外延生长...

通过氯化氢化学气相沉积法对厚4H-SiC薄膜同质外延生长的工艺优化 通过氯化氢化学气相沉积法对厚4H-SiC薄膜同质外延生长的工艺优化本篇文章中提出了一种通过氯化氢化学气相沉积(HCVD)在4°切割基板上快速同质外延生长厚的4H-SiC薄膜的工艺优化方法。所使用的气体是HCl与SiH4,C2H

氮化镓/碳化硅技术真的能主导我们的生活方式?(一)

  全球有40%的能量作为电能被消耗了, 而电能转换最大耗散是半导体功率器件。我国作为世界能源消费大国, 如何在功率电子方面减小能源消耗成了一个关键的技术难题。伴随着第三代半导体电力电子器件的诞生,以碳化硅和氮化镓为代表的新型半导体材料走入了我们的视野。  早在1893年诺贝尔奖获得者法国化

我国碳化硅器件制造关键装备研发取得重大进展

   以碳化硅(SiC)为代表的第三代半导体产业是全球战略竞争新的制高点。SiC器件具有极高的耐压水平和能量密度,可有效降低能量转化损耗和装置的体积重量,满足电力传输、机车索引、新能源汽车、现代国防武器装备等重大战略领域对高性能、大功率电力电子器件的迫切需求,被誉为带动“新能源革命”的“绿色能源”器

2024-SIC半导体展|上海SIC半导体展|

展会名称:2024中国(上海)国际半导体展览会英文名称:China (shanghai) int'l Circuit board & Electronic assembly Show 2024展会时间:2024年11月18-20日 论坛时间:2024年11月18-19日 展会地点:上海新国际

碳化硅外延层厚度及其均匀性的无损检测——红外显微系统

  第三代半导体碳化硅材料快速发展  近年来,5G通信、新能源汽车、光伏行业推动了第三代半导体材料碳化硅(SiC)技术的快速发展。相较于成熟的硅(Si)材料,SiC具有禁带宽、击穿电场高、电子饱和迁移率高、热导率高等优良的物理化学特性,是制备高温、高压、高频、大功率器件的理想材料,如电力转换器、光伏

高压碳化硅解决方案:改善4HSiC晶圆表面的缺陷问题1

  碳化硅(SiC)在大功率、高温、高频等极端条件应用领域具有很好的前景。但尽管商用4H-SiC单晶圆片的结晶完整性最近几年显着改进,这些晶圆的缺陷密度依然居高不下。经研究证实,晶圆衬底的表面处理时间越长,则表面缺陷率也会跟着增加。  碳化硅(SiC)兼有宽能带隙、高电击穿场强、高热导率、高

傅里叶红外光谱仪在第三代Sic半导体应用

   据消息人士透露,我国计划把大力支持发展第三代半导体产业,写入正在制定中的“十四五”规划,计划在2021-2025年期间,在教育、科研、开发、融资、应用等等各个方面,大力支持发展第三代半导体产业,以期实现产业独立自主。当前,以碳化硅为代表的第三代半导体已逐渐受到国内外市场重视,不少半导体厂商已率

碳化硅外延层厚度及其均匀性的无损检测——红外显微系统

第三代半导体碳化硅材料快速发展近年来,5G通信、新能源汽车、光伏行业推动了第三代半导体材料碳化硅(SiC)技术的快速发展。相较于成熟的硅(Si)材料,SiC具有禁带宽、击穿电场高、电子饱和迁移率高、热导率高等优良的物理化学特性,是制备高温、高压、高频、大功率器件的理想材料,如电力转换器、光伏逆变器、

微电子所在石墨烯电子器件研制上获得整体突破

  石墨烯材料具有优良的物理特性和易于与硅技术相结合的特点,被学术界和工业界认为是推进微电子技术进一步发展的极具潜力的材料。日前,中国科学院微电子研究所微波器件与集成电路研究室(四室)石墨烯研究小组成员(麻芃、郭建楠、潘洪亮)在金智研究员和刘新宇研究员的带领下,分别在采用微机械剥离方

第三代半导体有望写入下月十四五规划-成国产替代希望

近日,有媒体报道称,权威消息人士透露,我国计划把大力支持发展第三代半导体产业,写入正在制定中的“十四五”规划,计划在2021-2025年期间,在教育、科研、开发、融资、应用等等各个方面,大力支持发展第三代半导体产业,以期实现产业独立自主。国信证券研报中指出半导体第三代是指半导体材料的变化,从第一代、

石墨烯主要制备方法

1、微机械剥离法方法:用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。缺点:产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,不能满足工业化需求。

中国科大在石墨烯超低温可控外延生长研究取得系列进展

  近期,微尺度物质科学国家实验室曾长淦教授研究组与张振宇教授研究组及其国内外同行理论与实验互动性合作,在石墨烯超低温可控外延生长研究方面取得了系列进展,研究成果发表在ACS Nano, Physical Review Letters 和Scientific Reports上。   石墨烯,即

科学家开发出石墨烯/蓝宝石外延衬底-促进AlN薄膜生长

  深紫外LED可以广泛应用于杀毒、消菌、印刷和通信等领域,国际水俣公约的提出,促使深紫外LED的全面应用更是迫在眉睫,但是商业化深紫外LED不到10%的外量子效率严重限制了深紫外LED的应用。AlN材料质量是深紫外LED的核心因素之一,AlN薄膜主要是通过金属有机化学气相沉积(MOCVD)的方法异

SiCLED研究中取得进展-为我国SiC产业注入新活力

  中国科学院上海硅酸盐研究所与半导体研究所通过联合攻关,在SiC-LED技术路线方面中涉及的核心技术,如SiC单晶衬底、外延、芯片和灯具封装等方面取得了突破性进展,研制出了多种结构的SiC-LED,并封装成了灯具,完全打通了SiC-LED技术路线,为SiC-LED技术在半导体照明产业领域的推广打下

分子束外延(MBE)

  分子束外延设备有很多种。但就其主要结构而论是大同小异的。分子束外延的设备较其他外延技术的设备复杂,要包括超高真空系统努森箱及各种分析仪器。从MBE技术的发展过程看,当初主要是为开发以GaAs为中心的Ⅲ-V族化合物半导体,而后是针对Ⅱ-Ⅵ族和Ⅳ-Ⅵ族化合物半导体,最近正转向针对Si半导体器件的应用

中国科大石墨烯外延生长原子尺度的机理研究取得新进展

  近日,中国科学技术大学教授李震宇研究组与中国科大同行合作,在石墨烯外延生长原子尺度的机理研究方面取得新进展,首次揭示出在不同铜衬底上碳-碳二聚体是石墨烯生长的主要碳供给单元,解释了不同铜衬底上石墨烯生长中由不同的关键原子动力学过程所决定的微观机理,并预测了铜表面石墨烯不同生长形态(分维型或密集型

科学家提出倾斜台阶面外延生长菱方氮化硼单晶方法

常见的六方相氮化硼(hBN)因化学稳定、导热性能好以及表面无悬挂键原子级平整等特点,被视为理想的宽带隙二维介质材料。菱方相氮化硼(rBN)可以保持hBN较多优异性质,并具有非中心对称的ABC堆垛结构,因而具备本征的滑移铁电性和非线性光学性质。rBN是极具应用潜力的功能材料,可以为变革性技术应用如存算

我国学者成功制备超薄碲薄膜及其面内pn结构筑

  碲,英文名tellurium,源自拉丁文tellus(意为地球),是自然界中能稳定存在的最重的硫族元素。碲在单质和化合物中具有较强的自旋轨道耦合效应,其化合物是许多新奇物理现象的载体。近期,有关碲结构和性质的理论与实验研究正在引起研究人员的关注。图1 碲晶体结构及碲薄膜原子结构示意图。  最近,

深圳先进院用溶液法实现复杂氧化物大面积外延薄膜生长

  近日,中国科学院深圳先进技术研究院医工所纳米调控与生物力学研究中心在复杂氧化物大面积外延薄膜生长领域取得新进展,相关成果以Large-scale multiferroic complex oxide epitaxy with magnetically switched polarization

高质量InAs(Sb)/GaSb核壳异质结纳米线阵列外延生长获进展

  一维半导体纳米线凭借其优越、独特的电学、光学、力学等特性,在材料、信息与通讯、能源、生物与医学等重要领域展现出广阔的应用前景。尤其是,基于半导体纳米线的晶体管具有尺寸小、理论截止频率高等优点,为未来在微处理器芯片上实现超大规模集成电路开拓了新的方向。在III-V族半导体材料中,InAs具有小的电

中国科大合作在二维材料异质外延生长研究中取得新进展

  近日,中国科学技术大学合肥微尺度物质科学国家实验室博士后陈伟,与美国田纳西大学、中国科学院物理研究所、北京大学等研究机构的同行合作,揭示了弱的范德瓦尔斯力与强的界面化学键在决定生长过程中二维材料相对于衬底晶格的取向时所起的关键协同作用。相关研究成果于11月10日在线发表在《美国科学院院刊》上,陈

研究发现利用硅烯插层打开外延生长的双层石墨烯能隙

  石墨烯因其独特的晶格结构而具有诸多优异性能,但其零能隙特征极大地限制了它在电子学器件上的应用。近年来,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件重点实验室研究员、中科院院士高鸿钧带领的研究团队在石墨烯及类石墨烯二维原子晶体材料的制备、物性调控及应用等方面开展研究,取得了一系列

分子束外延(MBE)装置

  MBE装置由样品进样室、预处理分析室和牛K窜等组成。窜间用闸扳阀隔开,以确保生长室的超高真空与清洁。  根据MBE系统的几何结构相应地配置真空系统。根据要求,3个室的真空配置的配置泵的系统并非一样:  (1)进样室。真空度为1.33 x10-6~1 33 x10-8Pa。在l 33×10-6~1

应力诱导曲率对4HSiC-MOS平带电压和界面态密度的影响

碳化硅(SiC)上的栅氧化膜会严重影响SiC金属氧化物半导体场效应晶体管(MOSFET)的性能。本文作者通过电容 - 电压(C-V)测试研究了应力/应变引起的曲率对栅氧界面态密度(Dit)的影响。外延晶片的曲率通过薄膜应力测量系统进行测试。在干热氧化过程中,压缩/拉伸曲率导致SiO2

电子器件的光伏逆变器研制及示范应用项目通过验收

   近日,科技部高新司在厦门组织召开了“十二五”国家863计划“基于国产宽禁带电力电子器件的光伏逆变器研制及示范应用”项目验收会。   项目以实现碳化硅和氮化镓光伏逆变器的示范应用为最终目标,开发了低缺陷SiC外延生长技术、攻克了氮化镓二极管及增强型氮化镓三极管设计技术、碳化硅二级管及MOSFET

氮化镓/碳化硅技术真的能主导我们的生活方式?(二)

  最近接连有消息报道,在美国和欧洲,氮化镓和碳化硅技术除了在军用雷达领域和航天工程领域得到了应用,在电力电子器件市场也有越来越广泛的渗透。氮化镓/碳化硅技术与传统的硅技术相比,有哪些独特优势?  大家最近都在谈论摩尔定律什么时候终结?硅作为半导体的主要材料在摩尔定律的规律下已经走过了50多

2024-SIC半导体展|上海SIC半导体展|上海国际半导体技术展

展会名称:2024中国(上海)国际半导体展览会英文名称:China (shanghai) int'l Circuit board & Electronic assembly Show 2024展会时间:2024年11月18-20日 论坛时间:2024年11月18-19日 展会地点:上海新国际

碳化硅-(SiC):历史与应用

硅与碳的唯一合成物就是碳化硅(SiC),俗称金刚砂。SiC 在自然界中以矿物碳硅石的形式存在,但十分稀少。不过,自1893 年以来,粉状碳化硅已被大量生产用作研磨剂。碳化硅用作研磨剂已有一百多年的历史,主要用于磨轮和众多其他研磨应用。利用当代技术,人们已使用SiC 开发出高质量的工业级陶瓷。这些陶瓷