MOS器件的发展与面临的挑战(一)
随着集成电路工艺制程技术的不断发展,为了提高集成电路的集成度,同时提升器件的工作速度和降低它的功耗,MOS器件的特征尺寸不断缩小,MOS器件面临一系列的挑战。例如短沟道效应(Short Channel Effect - SCE),热载流子注入效应(Hot Carrier Inject - HCI)和栅氧化层漏电等问题。为了克服这些挑战,半导体业界不断开发出一系列的先进工艺技术,例如多晶硅栅、源漏离子注入自对准、LDD离子注入、polycide、Salicide、SRD、应变硅和HKMG技术。另外,晶体管也从MOSFET演变为FD-SOI、Bulk FinFET和SOI FinFET。1.1铝栅MOS管MOS诞生之初,栅极材料采用金属导体材料铝,因为铝具有非常低的电阻,它不会与氧化物发生反应,并且它的稳定性非常好。栅介质材料采用SiO2,因为SiO2可以与硅衬底形成非常理想的Si-SiO2界面。如图1.13(a......阅读全文
MOS器件的发展与面临的挑战(一)
随着集成电路工艺制程技术的不断发展,为了提高集成电路的集成度,同时提升器件的工作速度和降低它的功耗,MOS器件的特征尺寸不断缩小,MOS器件面临一系列的挑战。例如短沟道效应(Short Channel Effect - SCE),热载流子注入效应(Hot Carrier Inject -
MOS器件的发展与面临的挑战(二)
1.8HKMG技术当MOS器件的特征尺寸不断缩小45nm及以下时,为了改善短沟道效应,沟道的掺杂浓度不断提高,为了调节阈值电压Vt,栅氧化层的厚度也不断减小到1nm。1nm厚度的SiON栅介质层已不再是理想的绝缘体,栅极与衬底之间将会出现明显的量子隧穿效应,衬底的电子以量子的形式穿过栅介质层进入栅,
微电子所在高迁移率沟道MOS器件研究方面取得进展
中国科学院微电子研究所高频高压器件与集成研发中心研究员刘洪刚、副研究员王盛凯带领CMOS研究团队在国家科技重大专项02专项、国家“973”课题和国家自然科学基金等项目的支持下,对high-k/III-V、high-k/Ge界面的缺陷行为及控制方法开展了系统研究,经过近5年的持续攻关,取得了重要的
微电子所在新型硅基环栅纳米线MOS器件研究中取得进展
近日,中国科学院微电子研究所集成电路先导工艺研发中心在面向5纳米以下技术代的新型硅基环栅纳米线(Gate-all-around silicon nanowire,GAA SiNW)MOS器件的结构和制造方法研究中取得新进展。 5纳米以下集成电路技术中现有的FinFET器件结构面临诸多挑战。环栅
MOS-450波长的校正
MOS 450波长的校正仪器使用一段时间后需要对仪器进行波长校正,以保证测量的准确性,波长校正的操作步骤如下:1、 确认样品仓中没有任何样品和样品池。2、 根据光源选择的操作说明,将光源换为Xe(Hg)灯。3、 打开ALX-250、MM-450和PMS-450电源。4、 点击电脑中的BioKine软
物理所实现多层MoS2外延晶圆推动二维半导体的器件应用
以二硫化钼为代表的二维半导体材料,因其极限的物理厚度、极佳的柔性/透明性,是解决当前晶体管微缩瓶颈及构筑速度更快、功耗更低、柔性透明等新型半导体芯片的一类新材料。近年来,国际上已在单层二硫化钼的晶圆制备及大面积器件构筑方面不断突破,在晶圆质量和器件性能方面逐渐逼近极限。例如,中国科学院物理研究所
MOS场效应管概述
即金属-氧化物-半导体型场效应管,英文缩写为MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟
MOS450光源的选择
1、电源:图1中的Lamp power supply处有Xe(红色)、Xe(Hg)(红色)、零线(黑色)三个插孔。零线插头为黑色,直接插到黑色的零线插孔中。火线插头为红色,在做圆二色、紫外、荧光的光谱扫描时插在Xe(红色)插孔中,在做快速动力学测量的时候插在Xe(Hg)插孔中。 2、光源选择:图2
表面态对mos结构cv特性影响
因为半导体表面态是关系到少数载流子浓度的改变,而少数载流子存在有一定的复合寿命和产生寿命,浓度变化不是瞬间能完成的,所以表面态对mos结构cv特性影响,主要表现在对cv特性曲线形状的影响:使得强反型时的低频cv曲线上升到氧化层电容值,同时使得cv曲线沿着电压方向有所延伸,而且曲线变得不平滑、呈现出波
电源设计经验之MOS管驱动电路
在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速
二硫化钼纳米片功函数相关研究获进展
哈尔滨工业大学的研究人员在二维二硫化钼(MoS2)纳米片功函数及载流子浓度调控研究方面取得进展,相关论文日前在《美国化学会·纳米》刊发。 据介绍,与石墨烯相比,二维MoS2纳米片具有合适的带隙,适用于光检测等功能器件。金属电极与MoS2纳米片之间的电接触行为对器件性能的影响很大,研究者需要
CMOS场效应管相关介绍
电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,
ESENSING和ALPHA-MOS联合参加2009-BCEIA展会
ESENSING 和 ALPHA MOS 联合参加2009年11月25日至28日由中国分析测试协会主办的在北京展览馆举行的第十三届北京分析测试学术报告会及展览会(BCEIA)。展位号为3056,3058和3060,欢迎莅临。
臭名昭著的MOS管米勒效应(一)
如下是一个NMOS的开关电路,阶跃信号VG1设置DC电平2V,方波(振幅2V,频率50Hz),T2的开启电压2V,所以MOS管T2会以周期T=20ms进行开启和截止状态的切换。首先仿真Vgs和Vds的波形,会看到Vgs=2V的时候有一个小平台,有人会好奇为什么Vgs在上升时会有一个小平台?MOS管V
臭名昭著的MOS管米勒效应(二)
那在米勒平台究竟发生了一些什么?以NMOS管来说,在MOS管开启之前,D极电压是大于G极电压的,随着输入电压的增大,Vgs在增大,Cgd存储的电荷同时需要和输入电压进行中和,因为MOS管完全导通时,G极电压是大于D极电压的。所以在米勒平台,是Cgd充电的过程,这时候Vgs变化则很小,当Cgd和Cgs
科学家发现制备室温下获得二维铁磁半导体新方法
《中国科学报》从湖北工业大学获悉,日前该校Hong Jeongmin教授团队在《自然》子刊“npj-自旋电子学”发表了自旋电子学领域取得的最新成果,论文题目为“用二硫化钼(MoS2)制备室温光敏铁磁半导体”。湖北工业大学理学院、芯片产业学院青年教师陆晶晶为第一作者,Hong Jeongmin教授为论
锂电池保护板短路无保护的介绍
1. VM端电阻出现问题:可用万用表一表笔接IC2脚,一表笔接与VM端电阻相连的MOS管管脚,确认其电阻值大小。看电阻与IC、MOS管脚有无虚焊。 2. IC、MOS异常:由于过放保护与过流、短路保护共用一个MOS管,若短路异常是由于MOS出现问题,则此板应无过放保护功能。 3. 以上为正常
手机锂电池保护板发生异常的情况分析
1. 无电压或者电压低、带不起负载 电芯电压不良:测试电池保护板的自耗电是否过大而导致电芯电压低。 电池保护板回路不通:比如MOS管、IC元件损坏、电路不通、元器件虚焊、假焊、过孔不通等。 2. 内阻大 测试MOS管是否有异常,例如焊接异常、MOS管破裂,用万用表测试MOS管阻值。 在
全面解析MOS管特性、驱动和应用电路
在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS管的导通电阻、最大电压、最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOS及MOS驱动电路基础的一点总结,其中参考了一些资料,并非原创。包括M
研究揭示衬底诱导单层二硫化钼的电子局域化效应
近期,中国科学院合肥物质科学研究院固体物理研究所研究员徐文课题组与中国工程物理研究院科研人员合作,应用太赫兹时域光谱(0.2-1.2 THz)和傅里叶变换光谱(2.5-6.5 THz)研究了不同衬底上单层MoS2的太赫兹光电特性。相关成果以Substrate-induced electronic
我国科研人员研究不同衬底上单层MoS2的太赫兹光电特性
近期,中国科学院合肥物质科学研究院固体物理研究所研究员徐文课题组与中国工程物理研究院科研人员合作,应用太赫兹时域光谱(0.2-1.2 THz)和傅里叶变换光谱(2.5-6.5 THz)研究了不同衬底上单层MoS2的太赫兹光电特性。相关成果以Substrate-induced electronic
科学家攻克二维半导体欧姆接触难题
1月11日,南京大学教授王欣然、施毅带领国际合作团队在《自然》上以《二维半导体接触接近量子极限》为题发表研究成果。该科研团队通过增强半金属与二维半导体界面的轨道杂化,将单层二维半导体MoS2的接触电阻降低至42Ω·μm,超越了以化学键结合的硅基晶体管接触电阻,并接近理论量子极限,该成果解决了二维半导
锂电池保护板内阻大的相关介绍
1. 由于MOS内阻相对比较稳定,出现内阻大情况,首先怀疑的应该是FUSE或PTC这些内阻相对比较容易发生变化的元器件。 2. 如果FUSE或PTC阻值正常,则视保护板结构检测P+、P-焊盘与元器件面之间的过孔阻值,可能过孔出现微断现象,阻值较大。 3. 如果以上多没有问题,就要怀疑MOS是
上海光机所二维纳米光子学材料研究取得突破
近日,中科院上海光学精密机械研究所中科院强激光材料重点实验室王俊研究员及其合作者(强激光材料重点实验室张龙研究员、强场激光物理国家重点实验室赵全忠研究员,以及上海光机所中科院外国专家特聘研究员Werner Blau教授等)在国际学术期刊ACS Nano上发表题为Ultrafast Satur
半导体集成电路的分类概述
集成电路如果以构成它的电路基础的晶体管来区分,有双极型集成电路和MOS集成电路两类。前者以双极结型平面晶体管为主要器件(如图2),后者以MOS场效应晶体管为基础。图3表示了典型的硅栅N沟道MOS集成电路的制造工艺过程。一般说来,双极型集成电路优点是速度比较快,缺点是集成度较低,功耗较大;而MOS
场效应晶体管的分类
场效应晶体管是依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。 根据栅的结构,场效应晶体管可以分为三种: ①结型场效应管(用PN结构成栅极); ②MOS场效应管(用金属-氧化物-
锂电池保护板无显示的原因分析
①先用万用表测电芯正负极电压,如时电芯电压正常,则保护板有问题,进入步骤B;如果电芯无电压或电压低,则可测保护板静态电流(自耗电),其电流小于10μA,则电芯有问题,若电流大于10μA,则为保护板静态电流过大,保护板来料不良。 ②若是保护板有问题,则可用万用表黑表笔始终接触电芯负极,红表笔
新年第一篇!南京大学成果登Nature
下一代电子技术的发展需要将通道材料厚度缩小到二维极限,同时保持超低的接触电阻。过渡金属二卤属化合物可以维持晶体管扩展到路线图的结束,但尽管有无数的努力,器件性能仍然受到接触限制。特别是,由于固有的范德华间隙,接触电阻还没有超过共价结合的金属-半导体结,最好的接触技术面临稳定性问题。 2023年
异质混合集成光电器件研究领域取得新进展
近日,暨南大学物理与光电工程学院(理工学院)教授关贺元、副教授杨铁锋、教授卢惠辉领衔的光波导混合集成与微纳光电器件团队在异质混合集成光电器件研究领域取得新进展。相关成果发表于《激光与光子学评论》(Laser & Photonics Reviews)。MoS2/BaTiO3器件的非线性上转换光探测特性
中国科大二维磁性半导体材料研究获进展
中国科学技术大学国家同步辐射实验室副研究员闫文盛、孙治湖和刘庆华组成的研究小组在教授韦世强的带领下,利用同步辐射软X射线吸收谱学技术,在研究二维超薄MoS2半导体磁性材料的结构、形貌和性能调控中取得重要进展。该研究成果发表在《美国化学会志》上。 二维超薄半导体纳米片具有宏观上的超薄性、透明性