水生所在微藻脂质合成关键酶功能分化研究中取得进展
乙酰CoA:二酰基甘油酰基转移酶(DGAT)是催化三酯酰甘油(TAG)的最后一步合成的关键酶,也是TAG合成的限速酶。DGAT在植物种子发育与萌发、叶片新陈代谢、幼苗发育等生物学过程中发挥重要作用。在动物中,由于与TAG合成及代谢紧密相关,DGAT可作为治疗肥胖、糖尿病等代谢性疾病的药物靶标。DGAT是提高微藻油脂含量的关键靶标基因,长期受到关注。真核生物中DGAT通常分为I型和II型。在多种微藻中,相比于其他物种,II型DGAT基因的拷贝数显著扩增。例如,绿藻门的莱茵衣藻中具有5个拷贝,不等鞭微藻微拟球藻中有11个拷贝。然而,研究发现较多II型DGAT的基因并不具有真正的DGAT功能,学界尚不知这些基因的真实功能。 近日,中国科学院水生生物研究所藻类生物技术和生物能源研发中心在雨生红球藻II型DGAT酶的功能研究中取得进展,首次发现一个II型DGAT家族中的蛋白HpDGTT2不具备DGAT功能、但是行使其上游酰基转移酶(......阅读全文
乙酰CoA的转移
乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线粒体
简述乙酰coa的化学反应
1、它在具有线粒体的组织中可以进入三羧酸循环进行彻底氧化转 化为二氧化碳、水和能量。是三羧酸循环的起始底物,不仅是糖代谢的中间产物,也是脂肪和某些氨基酸的代谢产物。 2、在脂肪转化中作为中间产物存在。它既然是脂肪代谢来的,也可以作为原来在脂肪组织中逆向合成脂肪酸。 3、在肝脏中,多余的乙酰
乙酰coa的化学反应介绍
1、它在具有线粒体的组织中可以进入三羧酸循环进行彻底氧化转 化为二氧化碳、水和能量。是三羧酸循环的起始底物,不仅是糖代谢的中间产物,也是脂肪和某些氨基酸的代谢产物。 2、在脂肪转化中作为中间产物存在。它既然是脂肪代谢来的,也可以作为原来在脂肪组织中逆向合成脂肪酸。 3、在肝脏中,多余的乙酰
乙酰CoA进入三羧酸循环介绍
乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰-CoA作用,使乙酰-CoA的甲基上失去一个H+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰-CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反
关于乙酰CoA的转移的介绍
乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线
软脂酸的制备方法乙酰CoA的转移
乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸—丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线粒体
脂肪酸乙酰CoA的转移相关内容
乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸-丙酮酸循环(citrate pyruvate cycle)来完成乙酰CoA由线
Oxidation-ofoddnumbered-chain-fatty-acid-from-PropionylCoA-toSuccinylCoA
NON-Clickable Image The beta-oxidation of fatty acids in mitochondria progressively shortens fatty acids two-carbons at a time as acetyl-CoA units are
丙二酰CoA的生成
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。由乙酰CoA
酮体的生成和利用
酮体的生成酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一
Formation-of-Ketone-Bodies-from-acetylCoA
The acetyl-CoA produced by mitochondrial beta-oxidation of fatty acids enters the Kreb's cycle to produce energy, but that is not the only fate of
胴体的生成方式和过程
酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一反应的酶为
酮体的生成过程和场所
酮体的生成酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一
酮体的合成部位及合成步骤
酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一反应的酶为
酮体的生成介绍
酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一反应的酶为
乙酰辅酶A的生成利用的介绍
脂肪酸在肝外组织(如心肌、骨骼肌等)经β-氧化生成的乙酰CoA,能彻底氧化生成二氧化碳和水,而在肝细胞中因为具有活性较强的合成酮体的酶系,β-氧化反应生成的乙酰CoA,大多转变为乙酰乙酸(acetoacetate),β-羟丁酸(β-hydroxybutyrate)和丙酮(acetone),这三种
什么叫酮体?酮体是如何生成
1.酮体是乙酰乙酸、β羟基丁酸、丙酮的总称。: 酮体的生成:酮体主要在肝脏的线粒体中生成,其合成原料为乙酰CoA,关键酶是羟甲戊二酸单酰CoA合酶(HMG-CoA合酶)其过程为:乙酰CoA→乙酰乙酰CoA →HMG-CoA→乙酰乙酸。生成的乙酰乙酸再通过加氢反应转变为β-羟丁酸或经自发脱羧生成丙酮。
脂肪酸代谢概述(二)
(一)软脂酸的生成 脂肪酸的合成首先由乙酰CoA开始合成,产物是十六碳的饱和脂肪酸即软酯酸(palmitoleic acid)。 1.乙酰CoA的转移 乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须
合成酮体的关键酶究竟是
合成酮体的关键酶是HMGCoA合成酶。酮体的生成:以乙酰CoA为原料,在肝线粒体经酶催化先缩合,后再裂解而生成体,除肝之外,肾也含有生成酮体的酮体系。酮体的合成过程可分三步进行。1、由两分子乙酰CoA在硫解酶的作用下缩合生成乙酰乙酰CoA,同时释放出一分子CoA-SH。2、乙酰乙酰CoA再与一分子乙
酮体的组成
酮体是肝脏脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮三者的统称。酮体具有较强的合成酮体的酶系,但缺乏利用酮体的酶系,饥饿时酮体是包括脑在内的许多组织的燃料,可占脑能量来源的25%-75%,具有重要的生理意义。酮体合成酮体在肝细胞的线粒体中合成。合成原料为脂肪酸β-氧化产生的乙酰CoA.肝细
酮体的合成方法及步骤
在肝脏线粒体中脂肪酸一旦降解,生成的乙酰CoA可以有几种代谢结果。最主要的当然是进入柠檬酸循环及进一步的电子传递系统,最终完全氧化为CO2及H2O;其二是作为类固醇的前体,生成胆固醇,它在胆固醇生物合成中是起始化合物;其三是扮演脂肪酸合成前体的角色:其四是转化为乙酰乙酸、D-β-羟丁酸和丙酮,这三个
脂肪酸氧化的β氧化过程的介绍
脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。 第一步脱氢(dehydrogenation)反应由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰
关于脂肪酸的调节方法介绍
乙酰CoA羧化酶催化的反应是脂肪酸合成的限速步骤,很多因素都可影响此酶活性,从而使脂肪酸合成速度改变。脂肪酸合成过程中其他酶,如脂肪酸合成酶、柠檬酸裂解酶等亦可被调节。 1.代谢物的调节 在高脂膳食后,或因饥饿导致脂肪动员加强时,细胞内软脂酰CoA增多,可反馈抑制乙酰CoA羧化酶,从而抑制体
关于丙二酰CoA的生成的介绍
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。 由乙
软脂酸的制备方法丙二酰CoA的生成
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。由乙酰CoA
关于脂肪酸丙二酰CoA的生成的介绍
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。 由乙
脂肪酸的合成是在什么中进行的
脂肪酸合成的起始原料是乙酰CoA,它主要来自糖酵解产物丙酮酸,脂肪酸的合成是在胞液中。先说说饱和脂肪酸的合成:1.乙酰辅酶A的转运:脂肪酸的合成是在胞液中,而乙酰CoA是在线粒体内,它们不能穿过线粒体内膜,需通过转运机制进入胞液。三羧酸循环中的柠檬酸可穿过线粒体膜进入胞液,然后在柠檬酸裂解酶的作用下
酮体的利用
肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。
酮体的的应用方式
肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。
胴体的利用方法
肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。